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Abstract

The purpose of this thesis was to: (1) identify some
promising least squares selection procedures &iséussed_in
the literature,‘(Z) iﬁtroduce, implement, and.study a vari-
able selection method proposed by Alan J. Miller, and, (3)
make an extension of Ross J. Hansen'’'s 1988 thesis research
by coﬁparing the ﬁethods he éxamined:.Minimum MSE, Minimum
Sp, and Minimum C, with Miiler's method.

To expedite a comparative analysis of Miller’s method
-and the other methods, Response Surface methodology was
employed with two performance measures. The first was the
percentage of correct variables in a mo&el. The second, the
Theoretical Mean Squared Error of Prediction (TMSEP), mea-
sured the prédictive error between the model selected and
the theoretical model. Each technique was épplied on
generated data with known multicollinearities, vériances,
random predictors, and sample sizes. Both performance
measures were computed for models selected under ~ach téch—
nique. A full factorial design using each performance
measure was set up to study the effectiveness of{ each vari-
able selection technique with respect to the known data
characteristics. Equations were generated which related

these data characteristics to each combination of perfor-

viii




mance measure ard selection method; A'graphical aﬁalysis of
variance was performed to summarize each technique’s perfor-
mance. |

Miller’s method was shown to be the best overall tech-
nique for selecting models with the highest percentagelof
correct variables. Minimum MSE, followed clos2ly by Minimum

Sps selected models with the least TMSEP.

ix




A COMPARISON OF VARIABLE SELECTION CRITBRIA

FOR MULTIPLE LIN“AR REGRESSION. A SECOND SIHULATION STUDY
1. Introduction

Background

Linear regression is a statistical model-building tool
that uses data to cbnstruét a mathematical expression capd-
ble of estimating the'actual, but ﬁnknowﬁ, relationship
between a -et of independent or predictor variables and
their correspondxng response values. This mathematical
expression or model can, with a certain degree of accuracy,
predict the level of response of the associated phenomena,
given a set of predictor values. The methodologies, pro-
cesses and‘techniquqa employed to select which predictor
variables to include in a model form a sub;topic of linear
regression called subset selection. Unfortunately, it is
often difficult to determine the "best” set of predictor
variables to include in a linear regression model (Hansen,
1988:1). Alan J.| Miller, an expert in the field of subset

selection, assesses the situation on the back cover of his

newest book, Subset Selection in Regression:

Most acientific computing packages contain facili-
ties for stepwise regression, and often foz "all
subsets” and other techniques for finding "
best-fitting” subsets of regression variables.




The application of standard theory can be very
misleading in such cases when the model has not
been chosen a priori, but from the data. There is
widespread awareness that considerable overfitting
occurs, and that prediction equations obtained
after extensive "data dredging"” often perform
poorly when applied to new data. (Miller, 1990:co-
ver) v ‘ :

Clearly, as A.J. Miller points out, automated subset
selection processes are not foolproof. OGer-fitting is
“likely when one blindly applies an automated subset selec-
tion method, such as Stepwice Regression, to data containing
both significant and insignificant (random) predictofs. The
automated software selects predictors on the basis of some
preset criteria and will probably find the "best f£it" when a
large number of these predictors are included in the model,
including any random ones. At first, it may seem that
pre&ictors that are theoretically.independent of the re-

sponse would not be selected because they contribute nothing

to thgf:espénse, Freedman, however, demonstﬁqped that this
is not necessérily the case. His research indicates a gddd o
fit could result even when a model ié.constructed from'only
random noise predictors (Freedman, 1983:153). Furthermore,
when automatic algorithms compare models containing only
significant ptedictors and those cdntaining the same signif-
icant predictors augmented with random predictors, one of

the models containing randomness is often selected. This
occurs because the largest sample correlation among the

random predictors can become significant and, in turn, cause

2




the automated algorithm to favor a model éomposed of both

significant and random predictors.

The problem of over-fitting emphasizes that when the
subset éelection process is blindly furned 6ver to automated
algorithms implemented by compufer softwaré packages, the
resulting mathematical equation may be useless. It may
model tﬁe data and the noise in the data very well while
failing to achieve the real goal of modeling the.underlying
process or phenomena. As a result,v wheh one uses an over-
fitted model to predict future response levels, it generally
performs podrly Because the presence of the random predic-
tors effectively mask whatever predictive insight the sig-
nificant predictors have to offer (Cafarella, 1979:14).
Sometimes human judgement, témpered by years of experience,
can recognize when over-fitting has occurred, can discontin-
ue the automatic algorithm, ana-can select a more parsimori-
6us model. Which criteria to use, however, iﬂ‘selecting a
more parsimonious model that will indeed adequately repre-
sent the underlying process or phenomena may noﬁ be readily
known. Obviously, research ie needed to determine which

subset selection criteria perform best under a given set of

circumstances.
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Problem Statement

This research effort collected and analyzed data on -
certain subset selection techniques to betier understand why
they perform as they do. The nbjectives of this research
were: (1)-idéntify some promising least squares éelection
procedures discussed in ﬁhe liﬁerature, (2) introduce,
implement, and study a variable selection method proposed by
Alan J. Miller, and, (3) make an extension of Ross Hansen’s
1988 thesis research by comparing the methods he examined:
Minimum MSE, Miniﬁum S§, and Minimum C; with Miller’s méth-

od.

Assumptions

Miller’s technique requires certain assumptions prior
to its épplication. First, the collected data must be a
random sample from the population. Next the error terms of
the least squares linear regression must be independent and
identically distributed, be from a normal distribution, and
have a mean of zero and constant variance. Finally, when
the Stepwise regression is run, only Forward Selection is
used with a threshold F-value low enough to allow the selec-

tion of at least one known random predictor.

Scope
This study is an extension of Ross Hansen’s research in

which he examines three subset selection criteria (Minimum




MSE,'Minimﬁm Sp, and Miﬁimum Cp) under varying amounts of
multicollinearity, variable wvariation, number of variébles,
#nd sample size. Additionally, this study examined the
'perfofmahce of yet a fourth subset selection criteria,
previously described and referred to as Miller'’s method,
under the same conditions. The performance of Miiler's
method is compared to the performance of the three other
criteria Hansen studied. Contrasts and comparisons are made

and conclusions are drawn.




II. ’Coﬁéegt Overview

Least Sguares Regression

Assumptions. Certain key assumptions must be made
prior to constrﬁcting a least squares linear regression.
One must first assumé the collected data represents the
population from which it came. That is, the data reflects
the normal case of the variable. Secondly, the error terms
are assumed to be iﬁdependent and identically distributed,
fioﬁ a normal distributién with a ﬁean of zero and:variénce
0.

Notation. The aim of linear regression is to calculate
what proportion of the independent variables should be added
or subtracted to best predict the deperndent variable. In

general, the linear least squares regression equation is

‘written:
Y=+ 3133 ol AT e , (1)

where:

Y is the observed value of the independent vari-
able

Bo is the constant term

B1,B2/ ..., B are constant proportional multipliers
of the dependent variables Xq,X2,...,Xk

k is the number of independent variables

e is the error term.




If there are n observations, or data points, the above

equation may be written as:
a n ' , .
?: ¥, "'; (Bos * BasXyy + BosXpy ot BruXyy + €) (2)
B =1 ‘ , ;

For convenience, the above equation can be written in matrix

notation.
Y=Xp + e : _ (3)

where Y is an nxl column vector:

ya| @)

and X is a {nx(k+1)} matrix.

1 X, X2« -+ o X
1“.31}“2' * 'xak

x-..,......" (5)




The first column contains all ones for the constant terms.

The remaining columns contain the X;; independent variables.
The X matrix is commonly referred to as the design matrix.

B is a kxl column vector of regression coefficient:

B=i" ) | o (6)

g‘c ¢ : (7)

In least squares regression, each subset of regression

variables generates a surface which minimizes the squared

distance (error)'between the observed values for.the depen-

dent variables, Y, and the predicted values for the depen-

dent variable,

ming; (e))? = min‘g (Y;-Y,)? (8)




The goal is to find the subset of variables which
minimizes the squared distances between the actual values
observed and the fitted sﬁrface. The sumlof the squared-
error values is commonly referred to as the sum-of-squares
error (SSE). Graphically, a regression resembles the fol-

lowing:

Yn

o
>

X

Figure 1. Two-diwnensional Representation of Linear Least
Squares Regression ’

L 3

v
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SSR is the sum of the squareﬂ distances from the mean
to the regression 1iné, called Regression Sum of Squares.
SSE is the sum of the squared distances from the point to
the regreséibn line, called Sum of Squares Error. SST is

‘called Sum of Squares Total and is calculated by:

SST = SSR + SSE - (9)

10

ke st ot b = e .
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III. Summary of Current Knowledge

Regression

Regression Analysis, as a branch of statistical mathe-
‘matics, began in the late 1800’s when Sir Francis G&lton
first attempted to use practical mathematical techniques to
investigate the dependence between two variables: the height
of the parents (he used the average of the parents heights)
énd the heights of their adult children. Having randomly
collected (sampled) many pairs of parent/child!height mea-
surements (data), Galton observed that for a given parent-
height average, the conditional mean of the heights of
children with that given average parent height | "regressed"
toward the mean height of all children. Thus, theAte;m

regression analysis was born (Neter and others, 1990:26).

Regression techniques have since been developed that can
construct an equation or mathematical model based on past
historical data and then use this model to predict future

responses (Neter and others, 1990:27). -

Subset Selectioh

Subset selection is an area of regression analysis
concerned with choosing the "best" variables, or predictors,
to include in the regression model (Hocking, 1983:220). The

simple parent/child height model yielded only two choices:

11




one could accept the model or reject it. Accepting the
model meant that if one specified the parent-height, an
estimate of the adult chiid-height was automatically genher-
ated. Consider, however; the complexity that occurs if one
not only posseséeé the heiéhts of the parents but also their
right arm lengths. Then one would have to decide whether to
use a model to predict adult child-height baéed on the |
height of the parents, or the right arm length of the par-
ehts, or both, or neither. The methodologies of subset
selection can help suggest which predictors to use. Unfor-
tunately, and as previously addresséd, applying these meth-
odologies, without discretion, has a tendency to produce
over-fitted models that have litfle predictive capability
(Miller, 1990:12-13). '

In spite of these difficulties, however, subset selec-
tion does play an important role in regression analysis.

While other areas of regression analysis detect and correct

__ problems in the data prior_go model creation or verifyAﬁhemmwmm

adequacy of the model after creation, subset selection
techniques‘actually select the variables or/pfeéictdrs that
go into the model. These techniques are subdivided into two
major groupings: |

(1)Least Squares regression techniques

(i)Biased regression techniques

For this literature review, only the Least Squares regres-

sion techniques will be addressed. Selection techniques for

12




least squares have an advantage ovér bias regression tech-
niques in that the estimators are the best linear unbiésed
estimators (BLUE).

All-subsets regression. All-subsets regression does
just that--it forms a regression médel for each predictor or
combination of predictérs. Millér claims that only by an
exhaustive search of all 2*-1 combinations or subsets can
one be gquaranteed to find the best-fitting m&del (Miller,'
1984:391). Once.generated, various criteria may be employed
in searching alil 2*-1 models for the one that best fité the
data. The all-subsets variable séleétion criteria addressed

in this literature review are:

(1) Near-Optimal-Model for Mean Square Absolute Errors
(MSAE), : ‘

(2) Mallows Cp,

(3) Coefficient of Determination or R?,

(4) Maximum Adjusted R’ or Minimum MSE,

(5) PRESS,(Prediction Sum of Squares) or S;.

Although exhaustive and guaranteed to find the "best"
model ("best" being defined by the criteria used), the
All-Subsets method has two drawbacks, regardless of the
cviteria involved. First, it can only be used for a moder-
ately small number |

of predictors because the number of possible subsets of
predictors almost doubles with each additional‘predictor

considered (e.g. 1 for 1 predictor, 3 for 2, 7 for 3, 524787

13




for 19, 1048576 for 20, 33.5 million for 25, etc.)(Miller,
1990:56). Consequently, when considering a realistic number
of predictors (15 to 25) one is forced to use a less exhaué—
tive, but more efficient, sﬁbset selection techaique such as
Stepwise regression} Secondly, All-Subsets regression is
only guaranteed to find the "best"'méﬂel if all significant
pr-dictors are considered (Narula, 1993:160). If the group
of predictérs'under consideration ddes‘not contain all the
significant predictors, then the All-Subsets appreach can
not find the ”besﬁ" overall model, but will prcoduce the
"best" model for the predictors considered (Berk, 1978:3).
Mallows C,. Mallows C, is a statistic used to
determine the best model when the independént variables are

fixed. C, is an approximation of the Mean Squared Error of

Prediction (MSEP).

_ SSR
C, = 5

D +2p-n (10)

-~ where T e
SSR is the Regression Sum of Squares
s° is the estimate for the variance
p is the number of parameters

n is the number of data points

Theoretically the value of C, is p. Therefore, when C,

is approximately equal to p, the model is good. Draper and

Swith suggest using this criterion in conjunction with

14




stepwise regression to obtain the best subset (Draper,

1981:341). It should be noted, however, as the variance
approaches zero, the C, statistic can not be calculated.
Therefore this method has limitations especi&lly when the

fit is perfect.

Barr pointed out a weakness of Mallows Cp. Since s? in
the C, statistic is ;stimated from the original variable
pool, it could be biased and larger than the true variance
(Barr:5). If this is the case, the C, statistic will be de-
flated causing the wrong modelvto be selected. |

A limitation of C,, as well as many other statistics, - B
is that it "depend[s] on the observed data only through ‘
sufficient statistics, ao-they model quraQe behavior of the
fit of a model to the data” (Weisberg, 1981:27). Weisberg
developed a procedure which allocates the C, statistic to
individual cases. The advantage of Weisberg's procedure is
if the model under consideration is biased, it provides a
means to determine the bias of usihg a subset model instead
of the entire model (Weisberg, 1981:28).

Another application of the C, statistic is to choose
the model which has the smallest C, value. (Judge, 1985:863)
By choosing the model with the minimum C;, it is believed
that one is choosing the model with the minimum predicfion
error. This is appe#ling, especially when it is difficult to

determine the optimal subset using the C, close to p crite-

15




rion. Since the Min C, criterion is based on minimum pre-

diction error it is based on a sound principle.

However,

like the Cp~close-to-p criterion, Min C, is derived under

the assumption that the independent variables are fixed.

Since this rérely happens in practice, there is some ques-

tion to the usefulness of the Min C, criterion. Judge,
Griffiths, Carter, Lutkepohl, and Lee recommend that the Min

Cp procedure not be used in any applied work (Judge,

1985: 864)

Coefficient of Determination. The coefficient of

determination, Rz} is a statistic which gives an estimation

of the amount of variation about the mean which is explained

by the model.

., DX
. %;(ig -Y)?

where

9} is the predicted value of Yj.

Y; is the actual value of Y

Y is ﬁhe mean of Y.

(11)

At first one might believe that it is desirable to find the

model which has the maximum R?, since it explains the most

16




variation about the mean. However, this is not necessarily

the best. Certainly when wa look at the R’ value we would
‘like to see a large value, But it should noi be used as the
.'only measure for subset selection. Maximum R réceives.

little praise aé far as its usefulneés in determining a

"good fit. The major pitfall of using R’ is that whenever a

variable is added, it will increase R°. R

will increase
regardless of whether the‘variablé has anything to do with
the dependent variable. According to Healy 1986, "In'par-
ticular, the ﬁultiple correlation ééefficient:is not really‘
a regression-related concept at #11. It is basicaliy de-
fined to be the largest possible correlation between the
'y—variaté énd any linear function'of the x’s and this only
Amakes sense when y and x’'s have a joint probability distri-

bution" (Healy, 1984:608). If maximum R’ is used as the

selection criterion, the model containing all variébles will

Maximum Adjusted R’ or Minimum MSE. For simplici-

ty only Maximum Adjusted R? will be discussed. However,

always be selected.

Maximum Adjusted R’ and Minimum MSE test exactly the same
thing. Adjusted R’ is related to Rz, but an adjustment has
been made for the degrées of freedom. The following equation

- shows the relationship between R® and Adjusted re.
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 (1-R?) (n-1) 14
(n - p) (4

Adjusted R?* = 1 -

According to Draper and Smith, the adjusted R’ statistic
can be used not only to compare models for thé same data set
(the samelvariéble selection discussed in all other sections
of this literature reQiew), but also tolcompare models taken
from two eﬁtirely different data sets (Draper, 1981:62).

Hoﬁever, they do not recommend using the Adjusted R® statis-
tic in th%llatter role. The Adjusted R® statistic (or the
minimum MéE criterion) is still widely used in practice.
!PRESSp or S,. The S, criterion, originally pro-
posedbby %ocking in 1976 (Hocking, 1976:20), has.consider—

able appeil and'consequently receives praise in recent
years. The S, statistic is an approximation of the MSEP
based solely on the data and number of variables. As is the
case with MSEP, the goal of this criterion is to find the

minimum value.

i} SSE
» TE-p) (a-p-2) | %

18




Breiman and Freedman poiht out that the §; statistic
does not necessary provide an accurate approximation of
'MSEP, but works nonetheless (Breimaﬁ; 1983:132).

The advantages of this method are numerous. Looking at
the Sp é§ué£ion gives the reader an idea of the relative
ease wifh which S, is calculated. What makes Sp even more
Iappealihg.is it is based on MSEP; As Thompson points out,
“This metﬁod [Sp] is based on a sound criterion -- that of
minimizing the expected squared distance between the true
and prédicted values of the depéndent vafiable, Y" (Thomp~
son} 1976:6).' Since S, is an approximation of MSEP, it‘cah
be used like MSEP to determine the optimal number of regres-
sors to include in the model (Breiman, 1983:132).

Sp is not without its disadvantages. It must be calcu-
lated for ali 2k-1 possible subsets (Thompson, 1978:6).

Even though it requires relatively little computational ef-

fort, it does require that many regressiohs be run. Through
c;uh£;;m;;;ﬁblesrarieﬁah and Ffeedmén show fhgt when true-wv
variance due to prediction equals zero, the S, criterion
fails to pick the optimal number of variables to include in
the model (Breiman, 1983:132).

Stepwise Regression. A more efficient technique,
called Stepwise regression, does not consider all the possi-
ble combinations of predictors, but selects only the signif-

icant predictors and brings them into the model one at a
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time. Stepwise regression exists in three versions: 1)
Forward Selection, 2) Backward Elimination, or 3) a cpmbina-
tion of 1) and 2).‘ Forward‘Seleétion startg with no predic-
tors in the model. It then adds significant p:edictqrs to
the model one at a time. At each iteration, every predictor
nof yet in the model is tested for significance with respect‘_
to the current model, adding the most significanf one to the
model. The process con#inues until all predictors improving
the fit of the model are included in the model (Thompson,
1987:10). At no poiﬂt are variables ever t&ken out 6f_the
‘médel. Backward Elimination[ the reverse‘of Forward Selec-
tion, starts with every‘known predictor already in the .
model. At each iteration, all the insignificant'predictors
are identified Qith respect to the current model, and the
least significant predictor is eliminated. This proceés
continues until tests indicate th&t all insignificant pre-
dictors, with respect to the current model, have been elimi-
nated. At no point are variabies added back into the mocdel
(Thompsén, 1987:10-11). The combination of both techniques
proceeds like Forward Selection except that Backward Elimi-
nation is implemented at each step. Each predictor is
‘tested for significance with respect to the current model,
and the most significant predictor is added to the model.
Each time a new predictor is brought in, every predictor in
the new model is tested with respect to the new model to

make sure that it is still significant after the addition of
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the newest predictor. Predictors in the model are ranked by
their significance and the least significant predictor is
eliminated. This process continues until all significant

predictors are included in the mddelvand all insignificant

>predictors are eliminated (Thompson, 1987:11).

The overriding question, then, is how does one measure
significance among predictors? The most common measure of
significance,'called the F-statistic, is a ratio that shows
how much explanatory power a predicfor brings to the model
under consideration. To use an F-statistic in Forward
Selection stepwise regression, howevei, one must deéide what
numerical threshold of the F-statistic is appropriate. |
Selecting a small threshold F-value may inadvertently admit
random predictors into the model while choosing a large
F-stﬁtistic may cause significant prédictors to be omitted.

Miller’s Method. Dr. Alan J. Miller suggests an altei-

nate subset selection method -=- one which he theorizes could

guard against bringing random predictoré,into the model. He

proposes augmenting the set of predictors with an equal
number of "dummy" predictors'whose'values are random num-
bers. The method then applies Forward Selectionbstepwise
regression and Proceeds,'according to Miller, until the
first known random predictor is selected for inclusion in
the model. One then stops the Forward Selection stepwise
regression and discards the current model which includes

this known random predictor and uses the previous model
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(Miller, 1984:395). Any predictors not selected must,
therefore, have less sighificance than th. random predictor
that Forward Selection attempted to select. Thus, all pre-
- dictors not selected should be discarded as insignificant
(Hocking, 1983:220). Just how well this subset seléction'
method performs on data plagued with collinearity and other

problems is one of the questions which inspired this re-

search effort.
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IV. Methodology and Mudel Development

Objective
The goal of this thesis is to gain a better undersiand-

ing of the Minimum MSE, Minimum S,, and Minimum C, variable
selection criteria as well as introducing and studying vet a
fourth selection criteria: Miller’s method. The four

techniques will be compared.

Justification

In this research effort, four variable selection tech-
niques were examined: Minimum MSE, Minimum Sp, Minimum C,,
and Miller’s method. These methods were chosen for the

following reasons:

(1) Ross Hansen’s 1988 thesis research had already
studied and compared minimum MSE, minimum S;, and minimum Cp
variable selection techniques. The methodology and system-
atic approach he developed defined and guided this research
effort. However, due to recently discovered computer errors
in his data sets and analysis programs; much of Hansen'’s
original computations have been re-worked.

(2) Each of these techniques lend themselves to com-
puter implementation, allowing the researcher to conduct

useful experiments and gain'credible results with a reason-
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able aﬁount of computational effort. This is possible

becauée each of these techniques involve absolute criterion.

In other Qords, all four methods can be executed by a series
- of predetermined decisions. For the first three methods,

the MSE, S,, and C, statistics for each data set of vari-

ables can be calculated by the SAS (SAS, 1985:956) all-sub-
sets regression procedure, R~Squared. The model selected by
the Minimum MSE, Minimum S,, or Minimum C, methéds is simply
the one with the smallest value of MSE, Sp,.or Cor respec-.
tiveiy.‘ Similarly, for Miller’s method, a model for each‘
data set, augmented Qith the épprépriate number of random
predictors, can be automaticaliy selécted:using the SAS
Stepwise procedure with the fqrward selection option.
Miller'’s model is the lérgest subset of predictors from the
associated SAS model such that each predictor is added in
the order of éignificance determined by the assoéiated SAS

model and no random predictors are admitted. Upon encoun-

" tering the first random predictor, the selection process ~

terminates and the current model becomes the model for that

data set.

(3) The first three techniques are very powerful, as
Hansen points out:

The first three techniques appear in the last
decade’s literature. The Minimum MSE procedure
used to be one of the most widely used methods.
Its appeal over techniques such as Max R° stems
from its adjustment for degrees of freedom. More
recently, S, seems to have become the most popular
technique. 1Its appeal is based on the principal
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of minimizing mean square errors of prediction
(MSEP). The C, criterion is also based on MSEP,
and some authors praise this criterion. (Hansen,
£ 1988:31)
(4) A formal study of the fourth technique, Miller'’s
method, has not been reported in statistical literature to
cate. Comparing this virtually unknown subset selection

technique with the three well-understood techniqugé, Minimum
'MSE, Minimum S,, and Minimum C, methods, yielded véluable
insight into all four methods.
Limitations | -

Since this thesis extensively employs least squares re-

gression, the results and conclusions are valid only if

certain assumptions can be made about the data. As outlined

in Chapter 2, the data must be assumed to be representative
of the population. Likewise, fhe error terms must be as-
sumed to be independent and identically distributed from a
_norﬁal population with an expected value of zero apa é

constant variance o°. Finally, each predictor must be

assumed related to the response (Hansen, 1988:32).

Overview

The methodology and approach exercised in this thesis
will be similar in content to that used by Ross Hansen in
his 1988 study. Only a slight expansion in methodology

occurs with the additional implementation of Miller’s subset
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selection method. This‘reéearchkeffort can be divided into
roughly four areas of focus:

(1) Data generation.

(2) Model selection.

(3) Generation and analysis of a performance measure
for percentage of correct variables. |

(4) Generation and analysis of a performance measure
for method accuracy.

The data used in this study is the same as that em-
ployed by Hansen, except that certain computer errors have
been corrected. The data sets contain various known and
verifiable statistical properties.

A model was selected from each data set using each of
the four variable selection methods. To accomplish this;
preliminary models were formed using SAS all-possible sub-
sets and stepwise regression routines.. FORTRAN routines
then performed the final model selection process for each

method on each data set. . . .. . e

Two different sets of performance measures were calcu-
lated. The first set, designated PM, was used to evaluate
what effect the various statistical properties of the data
have on the percentage of correct variables selected in a
given model. Response Surface methodology (RSM) and Box and
Whisker plots were applied to determine what impact speclfic
statistical properties of the data and the subset selection

technique used have on the percentage correct variables
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selected for a given group of»modéls (Hansen, 1988:32). The
second set, designated TMSEP for Theoretical Minimum Mean
Squared Error of Prediction, is used td compére the accuracy
of one subset selection technique to another. This is
accomplished by compariﬁg médels created under different
éelection techniques to the thedretical model frcm which the
data was originally generated. Box and Whisker plots were
also‘generated to analyze the impact of each factor on the

accura~y of the models a methud selects.

Dafa Generation

Since this study compares its resﬁlts with the results
of Hénsen's stﬁdy, part of the data used came directly from
Hansen’s study. 'The Hansen data, however, was augmented
with an equai number of random predictors to accommodate
Miller'’s method.

The data for this study was generated from the follow-
ing equation:
i =X + X v X X 4 € (16)
where ¥; is the response variable.

ii,...,xﬁ are‘randomly generated predictors.

e€;j is a noise term to create variance in
the model.

Most siﬁulation studies investigate subset selection

techniques with all significant predictors plus some unknown

random variables included among the group of predictors from




which the model is created. This study attempted to find
what hapnens when one of the significant predictors is

deleted entirely from consideration. After the data is -

dreated by equation (1), the X, predictor is dropped from
consideration. Thié simulated the situatién which arises
when a significant predictor is unknown and not considered.
Additionally, either one or three noiée variables were.
included in the predictor pool to simulate data collected on
‘predictors thought to be significant but, in reality, extra- 'g ) i
"neous (Hansen, 1988:34-35). Furthermore, when Miller’s g =
variable selection method was impleménted, the predictor ‘ 1,\‘;1
pool (consisting of both significant and extraneous predic-

tors) w:.s doubled in size by the addition of an equal number ; .fi*f

of knoin random predictors. The number of random predictors % 'f?u;
added always equaled the number variables already in the ; 'Ll;;
predictor pool. 1In praCtiée, however; the actual data sets .
were ﬁot permanently expanded. SAS allowed each data set to

. be teﬁpérary expanded while running a s:epwise analysis'apd,fw,»'
implementing Miller’s method on each data set.

Factors. To understand héw the varicus staﬁistical

properties of the data effect each of the four techniques

studied, 3ix potentially significant statistical properties

or factors were chosen a priori and the data sets were
generated based on these six factors. RSM was used to

construct an equation made up of significant factors and

factor interactions which adequately predicts the usefulness




of each method (Hansen, 1988:35-36). The six factors con-

sidered in this study were:

(1) The number of extraneous variables in the original
group of predictors. These variables moudel predictors which
are believed significant, but are actually random, extrane-
ous predictors (denoted by EX;, EX;, EX3). Because these
variables are noise, they are theoretically independent of
the dependent variable. 1In this study, at the low setting
the number of extraneous varlables is 1 and at the high

setting, 3.

(2) The amount of correlation among the predictors
which are not extraneous, random variables (denoted by X,
X», X3, X,). At the low setting the variables are orthogon-
a_, or have zero correlation, while at the high setting they
are highly correlated with a correlation of 0.9.

(3) The variance of the extraneous predictors. . The
low setting for the variance is 1, and the high settlng is
100. :

(4) The variance of the significant predictors.
The low setting for the variance is 1, and the high setting
is 100.

(5) The sample size. The low setting for sample size
is 10, while the hlgh setting is 20. The low settlng was
set by Ross Hansen in his study of the S, criteria -- any
smaller and S, could not be calculated. Hansen’s bounds on
sample size were adopted to facilitate method comparison
{(Hansen, 1988:35-36).

(6) The variance of the ;;;;ritégﬁ;r The low settlng
for the variance of the error term is 0.0625, and the high
setting is 0 25.

Data Sets. Sixty data sets were generated for each of
the 64 high/low combinations of the six factor settings. 1In
the literature, each combination of factor settings is
typically referred to as a design point in the experiment.
In this case, the experiment was to determiné what effectb
each of the six factors has on PM. Hansen wrote automated

routines which created each group of the sixty data sets at
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related to the design point.

3840 data sets were generated.

For this thesis effort these

Appendix H contains FORTRAN

possess appropriate statistical properties.

files were renamed 0l.dat, 02.dat,..., 64.dat).

permanent factor order for future reference.

each of the sixty-four design points and put them in a file

In all,

code which was used to verify that the data sets do indeed
' A'close exami-
nation of Hansen'’s data revealed that he used the "natural
order" for generating all-possible combinations of the |

factor settings. To accomplish this, he first established a

. Table 1.
Factor Order for Data Generation
Order Factor . Values Factor
Description =1 8 ol
P Low High '?Fb-"
1 # of extraneous
predictors 1.C 3.0 A
2 Correlation among
indep. predictors 0.0 0.9 B
3 Variance of ext.
predictors 1.0 100.0 C
4 Variance of
indep. predictors 1.0 100.00 D
5 _
Sample Size 10.0 20.0 E
6 Variance of the
error term 0.0625 0.25 F

-1
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The factors were then varied according to the "natural

order". Factor A is varied most rapidly from its low to high
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"setting, followed by Factor B, C, D, E, and F. The follow-

ing table gives a example of factor combinations at several
design'points. For the sake of brevity, "A" means factor A
at its high setting and "a" means factor A at its low set-

ting and so forth.

Table 2.
Mapping of Design Points to Factor Settings
Design Point | Data File | Factor Settings”
1 01l.dat abcdef
2 02.dat Abcdef
3 03.dat aBcdef
4 04 .dat ABcdef
5 05.dat abCde f
6 06.dat Abcdef .
7 07.dat aBCdef
8 08.dat ABCdef
9 09.dat abcbDeftf
64 64.dat ABCDEF

Generating.the data in this systematic fashion results in an
equation relating the performance neasure for each subset
selection method tO'these six factors. Before the perfor-
mance measures can be generated, however, models must be

selected using each technique on each data set.
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Model Selection

Generally speaking, the variable selection process for

all four methods involved employing SAS routines to develop

a set of models énd then filtering through those acdlelz w«with

FORTRAN programs, selecting a model by each method. The
implemerntation of this methodology was similar for the

Minimum MSE, Minimum Sp, and Minimum C, variable selection

techniques, but differed for Miller’s method. Appendices A

and B clearly outline these techniques and reveals these

differences.

The reader should keep in mind that the best model at
each design point consist of only three predictors: X;, Xz,
X3 because X, had been discarded after data generation.
Extraneous predictors, EX;, or EX;, EX;, and EXs;, were
added to create the experiment. Although the experimenter
knew these were extraneous variables and that they should
not be selected for inclusion in the model, the three sig-
nificant prediofors and the extraneous predictor(s) were
presented nevertheless to the selection process as legiti-
‘mate predictors.

Minimum MSE, Minimum S,, and Minimum C, Methods. Sepa-

rate processing was performed for data sets possessing one

extraneous predictor and those with three extraneous predic-

tors (see Appendix A). The all-possible subsets SAS rou-
tine, RSquared, was used to generate the models. Fifteen
models were generated for design points with 4 variables in
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the pool and 63 models for design points with 6 variables in

the pool and the MSE, C,, and S, statistics calculated for

each model. The two different quantities of models are due
to the_number of predictors (p) being congidered and is
equal to 2P-1. fORTRAN programs then filtered through thé |
models for each data set and selected three models for eaéh
data set: one with the smallest -MSE statistic, one with thé'
smallest Cp, statistic, and one witﬁ the smallest Sp statis-
tic.

Miller’s Method. Again, it was necessary to handlé'the
. processing separately for data seté possessing one extrané-
ous predictor and those with three extraneous predictors
(see Appendix B). To employ Miller's method, the data sets
were purposely augmented with an equal number of known
random predictors. Depending on whether the number of
extraneous variables in the data set is 1 or 3, either 4 or
6 random predictors, respectively, were added to the data
set. Miller’s method effectively doubled the number of
predictors.in the pool at each design point. The total
number of predictors under consideration by Miller'’s selec-
tion process at each design point varied from 8 (3 unknown
true predictors, 1 unknown random predictor, 4 known random
prediccors) to 12 (3 unknown true predictors, 3 unknown
randon predictors, 6 known randém predictors).

Or~e augmented, the SAS Stepwise routine using Forward

Selection processed each data set. One should note that the
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F-to-enter threshold criteria was set to 1 to assure that at
least one of the known random predictors would be admitted

to the mbael. Once a model was generated for each data set,
FORTRAN programs were used to generate a model for each data

set via Miller’s method.

Performance Measure (PM) for the Percentage of Correct

Variables

Justification. How one raﬁes the performance of a
subset selection technique is a critical issue. Adopting a
reasonable, logical rating system eventually led td the
development of equations which related the success of a
method to the statistical properties of the data to which it
was applied. Hansen contends that there are no gﬁaranteed
methods to screen oﬁt extraneous variables (random noise
terms which. do not contribute at all to the model). Fur-
thermore, he contends that once in the variable pool, there
is no criterion which guarantees that no extraneoué vari-
ables will be chosen for the model. Even the all-subset
procedure, which A.J. Miller contends performs quite well,
occasionally chooses eitraneous variables (Hansen, 1988-
:32-33). | |

Since there really are no "guaranteed methods" for
capturing all the true variables, an excellent measure of

performance is to rate the success of a subset selection
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method by the percentage of variables chosen correctly.

This index, referred to as PM, is calculated as follows:

pM = Dumber of correct variables chosen (17)
number of variables chosen

This study used PM to examine the relative éontribu-
tions of the six factors as they felate to the performance
‘of each of the four subset selection methods studied.
Furthermore, PM is a logical choice for two reasons.  First,
the best model may not include all the predictors it is
generated from, but only the most significant. Even though
a response value may have Leen generated from three predic-
tors, the best model may only contain two of those predic-
tors. Therefore, PM‘compensates by determining the percent-
age of correct variables chosen. 'Second, PM takes in to
account the number of extraneoué variablesvchosen; .If is
wor?e to select a model with only two predictors, one of
which is extraneous, than it is to select a model containing
five predictors, one of which is extraneous. PM adjusts
accordingly (Hansen, 1988:33).

Calculation of PM. At each of the 64 design points, 60
mcdels were generated. FORTRAN routines examined the 3840
(64 times 60) modéls produced and selected a model based on
the criteria for each method studied. In this final stage
of model selection the FORTRAN procgrams also collected the
following statistics at each of the 64 design points:

(1) The total number of predictors chosen in all
60 data sets.
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(2) The total number of correct predictors chosen among
all 60 data sets (Hansen, 1988:39).

Using tbese statistics, PM was calculated for each method at
each design point. With PM in hand, the experiment was set
up and the relationships determined between the PM and the
six factors.

_Exgériment. When using RSM it is convenient to work
with coded factors (-1,1 variables) for the following
' reasons: |

(1) By coding the factors, the resulting predictors are
of the same magnitude.

(2) Calculations are simplified.

(3) The resulting design matrix, %, is orthogonal.
Consequently, stepwise regression can be used to
find the significant factors with confidence
(4:36).

In general, translating a variable from uncoded space
to coded space is as follows:

x- HIGH+LOW

| - 2
R T T T N o z N HIGH- LOW B - o o (18)

2 2

where X is the variable in uncoded space
2 is the variable in coded space
HIGH is the upper bound on the uncoded
variable

LOW is the lower bound on the uncoded
variable
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‘The following equations were necessary to code the vari-

Z, = AI—?- | (19)
Z2 =‘B-°-45 . (20)
C-50.5 (21)

Z, = E"515 ' | (23)

- F-0.15625
¢ 0.09375 (24)

where 2,,...,%¢ are the coded variables.
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Table 3.

 Variable Coding for Response Surface Methodology

Variable Uncoded Non-Coded Coded . Coded
- Description Variable | . Variable
' _Neme Low High Name | Low | High

Number of ext. ‘ E
vars. : A 1.0 3.0 24 -1 1
Correlation of ‘
Variance of
ext. vars. Cc 1.0 100 23 -1 1
Variance of
ind. vars. D 1.0 100 ' -1 1
Sample Size

E 10.0 20.0 Zs -1 1
Variance of
error term F 0.0625 | 0,25 Z¢ -1 1

It seems reasonable to assume significance of individual

factors as well as the significance of interactions between

factors. To insure that estimates for both these main

factors and their interactions can be accurately calculated,

. a full 2° factorial design is necessary. To construct the

design matrix for a full factorial design, the coded factors

are varied from their low to high»sétfings with the first

coded main factor being varied most rapidly, the second

varied next most rapidly, and so forth. The interaction

terms are simply the product of the corresponding coded main

factors. ZIn example of this process using full 2’ factorial

design is summarized in the table below.

38




P

| Table 4.
Example of Coding Interaction Variables

eQErcrerom® AOAON

If a design with less than 2° runs is used, information on
some of the high order interactions would be unobtainable
(Hansen, 1988:38). |
Results. The significant factors that contribute to
the PM were selected using Stepwise regression with Forward
Selection and Backward Elimination (since the design métiix
for this experiment was orthogonal). The resulting equa-
tions indicate which factor or factor combinations were mostA
significant in increasing the PM, the percentage of correct
variables, for a particular method. These equations are not
intended to predict the percentage of correct variables,
given certain factor séttings. The role of these equations,
however, is restricted to determining which factors’are
significant and how they contribute to the percentage of

correct variables in a model. On this basis, the four
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subset selection methods can be‘compared. rhree similar
equations were discovered by. Hansen, one for each of the
three criteria he studied (Hansen, 198(:39). The analysis
which follows is based on the #ssumption that the closer a
PM value is to one, the better a method’s performance. |
Factors which cause PM to become closer to one are desir-
able. -
PM Equations. Using the statistical package

STATISTIX version 4.0 a 2° full factorial design matrix was

created and adgmented with tﬁe PM vector (STATISTIX, 1992).
This design matrix was theﬁlexported to the SAS system where
a Stepwise regression procedure was run, generating the
equations below, as outlined in appendix E (SAS, 1985). An
equation was generated for each method studied and shows how
that method’s performance is related to the factors under
which it was applied.

S = PMygy = 0.78-0.10(A) +0.0023 (D) +0.006 (E) +0.0062(F)

+0.003 (AE) +0.003 (AF) -0.003 (DF) -0.006 (EF) (25)
-0.003 (AEF)
Minimum Sp.

PM,, = 0.85-0.07 (&) +0.002(D) +0.007 (E) +0.007 (F)

+0.002 (D) +0.006 (AE) +0.003 (DE) +0.007 (AF) (26
-0.002(DF) -0.005(EF) -0.002 (ADF) -0.006 {(AEF)




Minimum C,.

PM_, = 0.84-0.07 (a) +0.003 (D) +0.007 (E) +0.008 (F}
+0.002 (AD) +0.006 (AE) +0.003 (DB) +0,008 (AP) (27)
-0.003 (DF) -0.005 (EF) -0.002 (ADF) -0.006 (AEPF)

Miller'’s Method.

PMyrrren = 0.88-0.04(A) +0.01(B) +0.02(E)

+0,01(AB) +0.008 (AE) -0.008 (BE) (28) -
~0.008 (BCEF)

Summary of Effects.

Table 5. '
Maln Factor Coefficients of Effects by Method for PM

| METHOD -»-— ;J Minimum "[Hinimuﬁ” Minimnm‘ ‘Miller’s
| . | MSE S | G | Method
,,,,, { 1 FacTOR I - : RN [N
{ A (ext. vars.) | - 0.1 - 0.07 - 0.07 - 0.04
ﬂB(ind. corr ) ' 0 0 0 + 0.01 ﬂ
lc (ext. o2) i 0 0 0
D (ind. o%) } + 0.0023 | + 0.002 + 0.003 0
E (sam. size) |+ 0.006 + 0.007 + 0.007 + 0.02
F (error o°) | +0.0062 | +0.007 + 0.008 0
Intercept (p) + 0.78 + 0.85 +0.84 + 0.88
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Table 6.
Main Factor Effects by Method and Rank Order of Significance-
for PM

Minimum Minimum Minimum Millex’s
MSE S, Cr Method

METHCD -

| FACTOR

A (ext. vars.) " ‘1st 1st 1st 1st

B (ind. corr.) || No effect | No effect  No effect 2nd

c (eXf;“oz)b. No effect | No effect | No effect | No effect

D (ind..o?) 4th 4th 4th No effect

E (sam. size) 3rd ~ 2nd 2nd 3rd
EF'(error o) 1 2nd 3rd 3rd No effect

All Four Methods. The following results
pertain to ail methods:
(1) The fewer the number of extraneous va.iables the
better the performahce.
(2) Larger sample‘sizes.also yielded better perfor-
mancé.
(3) The variance of the independent variable had llttle
effect on the performance of any method. ‘”,,WW”,”, m,W“ R
Minimum MSE, Minimum C,, Minimum S, Method.
The following additional results were observed for these
methods:
(1) Higher variances on the independent variable yield-
ed better results.
(2) Higher variances on the error term give better

results.

gty S B




(3) They were not affected by the correlation of the

independent variables.
Miller’s Method. The following additional
~ results were observed for this method: | ‘
(1) The method did better when the indepéndent vari-
ables are highly correlated.
(2) It was not affected by the fluctuatinéavariance on

any term (independent or extraneous variables or the error

term).

Analisis.

To further assess the impact of each'factor (A} B, c,
D, E, F) on PM for a givén method, S?ATISTIX version 4.0 was
used to produce Box and Whisker plotéiby indicator grouping
(STATISTIX, 1992:96). Each PM value was éssociated with one
of eight.values or indicators, dividing it into eight équal
indicator groupinjs; To assign the indicator values, an
intéger "1" through—"4" was assigned to PM values according
to the method it measured: 1 for minimum MSE, 2 for minimum
Sp, 3,fbr minimum Cp, and 4 for Miller’s method. Next, each
number was assigned either a plus or minus sign depending'on
the factor setting of the factor under consideration, plus
for high valﬁes and minus for low values. A set of indica-i
tor values was developed for each of the six factors stud-

ied. The six resulting plots reveal much about the useful-
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ness of the four subset selection techniques in choosing the

correct variables.

0.9¢

-
L 4
-

-
~
~

- -Pereentage of Carrect Variables (PM)

| 8.70

§.83

Effect of Factor A on PM by Method

*

£ e ==

I

*
o]
[¢]

Legend:

-2 -1 1 2

High/low Factor A Groupings by Method

+..Migh A, -..Low A, t..MSE, 2..5P, 3..CP, 4. .Mitlere

Figure 2. Box and Whisker Plots Showing the Effect of

Factor A on PM by Method

ables, Minimum MSE is the most affected by the number of
extraneous variables in the variable pool.

and high settings, the Minimum MSE method degraded by 15

Of the four methods applied in selecting correct vari-

percent on the average.
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On the other hand, Miller’s method was a top pérformer

at either setting. Miller’s method, on average, outper-
formed the ot*.er three methods being leést affected by‘the
. number of extraneous variables present. ' Since in practice,
.tﬁe number of extraneous variables present in a variable
‘pool is not known (by definition), the consistency of Mill-
er’s method in dealind with an unknown numbef of extraneous
Qariables is highly désirable.
When only one extraneous variable is present, the
. performance of Minimum S, and Minimum C, was constant and
Astable, chooéing the correct variable at least 91 times out
of 100. Under these circumstances, where few extraneous

variables were in the pool, the performances of Minimum S,
and Minimum C, were predictable and reliable, though not as

good as Miller’s method.
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Effect of Factor B on PM by Method

-4 ) -2 1 1 2

High/low Factor B Groupings by Method

Legend: +..High B, -..Low 8, 1, .MSE, 2..5P, 3,.CP, 4..Mlllers

Factor B on PM by Method

Figure 3. Box and Whisker Plots Showing the Effect of

Miller’s method selects the highest percentage of

correct variables at either level and is the only method

significantly affected by an increase in correlation among

the truly significant predictors. The ability of Miller'’s

method to select correct variables actually increases as the

correlation between the correct variables increases. This

occurs because the increased correlation among the correct

variables causes them to behave as one variable.
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correct variable is selected, it is equivalent to all the

correct variables being selected.

Effect of Factor C on PM by Method

0.91

0.984

0.77

Percentage of Carrect. Variahles (PM)

8.70

-4 -3 . -2 ] 1 ] 3 4

High/low Pactar € Groupings by Nethod

Legend: +..MHigh C, -..Low C, 1..MSE, 2..3P, 3..CP, 4..Mlllers

Figure 4. Box and Whisker Plots Show1ng the Effect of
Factor C on PM by Method =

Factor C, the variance of the extraneous variable, had
little effect on ény of ﬁhe.four methods. The median of the
MSE method improved slightly with an increase in variance of
the extraneous variables while the median of Miller’s method
decreased slightly.

The Minimum S;, Minimum C,, and Minimum MSE methods lag

behind Millers method and show a greater variability.
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Clearly the Minimum MSE method selects the smaliest percent-

age of correct variables.

Effect of Factor D on PM by Method

8.91

0.94

[ P 2]

Perceaitage of Correct Variables (PM)

0.70

-4 -3 -2 .-t 1 2 3 4

mﬂanmncmpmpbym

Legend: «+..High D, -..Low D, 1..MSE, 2..5P, 3..CP, 4..Millers

Figure 5. Box and Whisker Plots Showing the Effect of
Factor D on PM by Method

Again, this plot for factor D, like that of factor C,
shows that the variance of|the correct variables has little
effect on the percentage of correct variables chosen for any

of the four methods.
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Effect of Factor B on PM by Method

!
o l |

. |

o

i ]

:

e

Legend: .. High E, -..low E, 1, .MSE, 2..5P, 3..CP, 4..MIllers

Figure 6. Box and Whisker Plots Showing the Effect of
Factor E on PM by Method .

Increasing the sémple size, factor E, increases the
median performance of Miller’s method by 5 percent. The
Minimum MSE method also improves slightly as sample size

increases. The Minimum S, and Minimum C;, method are not

effected.
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Effect of Factor F on PM by Method

L 2}

6.84

Percentage of Correct Variabies (PM)

.70

-4 -3 -2 -4 1 ? ? 4

E¢Aﬁhdarmmnpwumm

Legend: «+,..High F, -..Low F, 1,.MSE, 2..5P, 3..CP, 4..Mlllere

Figure 7. Box and Whisker Plots Showing the Effect of
Factor F on PM by Method

Increasing the variance of the error term, factor F,
has little effect on any of the four methods. The median
performances of the Minimum MSE method and Miller'’s method

is slightly increased at the higher factor levels.

Theoretical Mean Square Error of Prediction (TMSEP) as a
Performance Measure of Model Accuracy

Justification. Thus far, analysis has been iimited to

studying the effects which varying factors have on a meth-
od’s ability to select the correct variables. PM, however,
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when employed as an index for comparing different .selection

methods, favored techniques which select models with the

| highest percentage of correct variables. Although models

with a high percentage of correct predictors are desirable,
methods which select such models may do so by selecting more
variables overall. 1In suchAmodels, the ratio of extraneous
vériables to all the variables may be smail, but the abso-
lute number of extraneous variables may'be larger than

desired simply because of the sheer number of variables

selected. Comparing technigues on the basis of PM'may favor

- methods which create these larger models rather than those

which create parsimonious models. Therefore, a different,
more absolute performance measure was adopted to compare
selectidn techniques in terms of how closé;the selected
ﬁodels response value is to the true response value. A
comparison of how accurat-~ly each technique perforﬁs can be
accomplished using another performance measure known as
Theoreticai Minimum Mean Square Error of:Prediction (TMSEP)

and defined by:

oy -

2:(!E'Ykm92

TMSEP; 5 = <2 ‘ 29
EM (=D, )

where
TMSEPyy is the TMSEP for data set k using the

subset selection technique M

¥, is the theoretical conditional mean of Y calcu-
lated from the underlying data generation model
(1) and the data set k.
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i;n is the predicted value of Y using‘the model

selected by applying method M to data set k
" ny is the sample size of data set k.

P 1s the number of predictors in the model se-
lected by applying method M to data set k

TMSEP is a good choice for an inter-technique cbmpari-
son. It compares each method’s model at a particular aata
set to the theoretical model which generated the original
data. 1In theory, TMSEP directly measures how well the
predicted model explains fhe variations in the original
data. Furthermore, the TMSEP criterion is a variation of
Mean Squared Error Predictioh (MSEP), a statistic that has
received much praiss in the literature. TMSEf and MSEP both
calculate the squared difference between the predicted value

of Y and the actual value of Y and adjust the value for the

degrees of freedom. TMSEP differs from MSEP, however, in
its calculation. TMSEP is calculated by squafiﬂ§m££;
difference between the theoretical Y value (the response
from the underlying data generation equation, excluding the
error term) and the predicted Y value generated by the model
constructed using variable selection procedure, M. The
resulting value is the Theoretical MSEP or TMSEP. Since the
TMSEP is based on MSEP which has received considerable

praise in the literature during the past decadé, the TMSEP
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is also considered a most promising criterion (Hansen,

1988,43- 45)
In defending the credlblllty of TMSEP, Hansen notes

that at first glance, TMSEP appears to unfairly favor the
Minimum Cp, and Minimum S; ~riteria because bcth are based in

minimum MSEP. Furthermore, one might falsely assume that

since the S, criterion and TMSEP are based on the regressors

being randomly generated, the TMSEP would favor the Minimum

Sp method. Hansen clearly shows this is not the case.

It is assumed when calculating the S, and C, sta-
tistics that all relevant variables are included
in the variable pool. It is also assumed that the
variable pool does not contain extraneous vari-
ables. 1In this study both of these assumptions
are violated. Therefore, it is possible that
"either the MSE, Cp[, or Miller] criterion could
outperform the S, criterion. (Hansen, 1988:46)

.‘Caléulating TMSEP. The equation presented thus far to
calculate TMSEP does so one Aata set at a time. Recall that
the generated data consists of 64 design points each of
which is made up of 60 data sets. In order to compare each
6f the fdur variable selection techniques, the TMSEP must
somehow be calculated for each technique at each design
point. Although generating the TMSEP for each data set is a
sta.ting point, a slightly different TMSEP equation is

necessary to generate the aggregate TMSEP at each design

point.




Starting with the original equation from Hansen’s thesis:

oy _
(Y.~Y, )32
TMSED, . = cz-; e (31)
k.M - :
(ng=Dy,

Then, applying algebra yields:

Dy

Y -.17 C /"l
(n,~Dy, ) TMSEP; \ _ ci_;( ¢~ Yo, (32)

oz

o2

Hansen assumed a Chi Square distribution (Hansen,

1988:44)

ny '

-7 Y2

2 et (33)

ot " Xneew
Then, it follows from equation 31 that:

(nk-pk'u) MEPR'" )
o2 ~ X gm0 (34)




Based on the theorem that the sum of .1nd°pendent x vari-

ables is also xz, we have:

io: (Dy=Dy, ) TMSEP, \,
k=l 03 .

Now

s

- 7.‘2 (ay-Px, OR x ‘: 2y o o ]

. _ [ﬂx
(nk'pk,n) MEP‘, M 60 lg (Y, e"lg,y)

o2 1

60 A

(Y.~Y, )2
© [ (n,~D,.,0) mszp,,,,,] i XY (v

02

oi

(36)

(37)




Therefore, the formula for calculati~ g TMSEP is:

€0 2y

60 Z:}:(Y ~Yeu?

TMSEP, , = Y, TMSEP, , =

kwl
EncEo

 where TMSEP,y is the TMSEP at design point D
using method M

(39)

Minimum MSE, Minimum S,, and Minimum C, Methods.

Appendly C outlines the data processing to calculate TMSEP
for each de31gn point for the above three methods. The
processing is similar to that performed at each design point
during subset selection for each method. The processing
differs in that for each model selected, the coefficients of
regression are estimated by SAS. The FORTRAN pfogram uses
these coefficients and the original data to generate TMSEP
for each design point and each method.

Miller’s Metnod. Appendix D outlines the data E“
processing to calculate TMSEP for each design point for
Miller’s method. A FORTRAN program creates a SAS program
file to calculate the coefficients of regression for each
model. This SAS program is executed and the output is
filtered and formatted by yet another FORTRAN program. A
third FORTRAN program processes this output alohg with the
data sets and calculates the TMSEP for each method and

design point.




Experiment. An experiment identical to the one run for

PM was run to determine the significant factors for TMSEP.

Basically, TMSEP was substituted for PM in thebexperimental

design and then the experiment was run as before, using the

SAS Stepwise procedure.

Results.

The same comments that applied to PM apply to

TMSEP, with one notable excueption. Whereas with'PM, values

- 17 were desirable, with TMSEP values - 0' are the target.

TMSEP Equations. These equations were genérated

in exactly the same manner as the PM equations

TMSEP, ey = 22.15-1.76 (A) -16.91(B) +21.6 (D) +3.04 (E)
+1.4(AB) -1.75 (AD) +0.74 (AE) ~16 .57 (BD)
-2.4(BE) +3.03 (DE) +1.38 (ABD) -0.65 (ARE) |

+0.74(ADE) ~2.36 (BDE) -0.64 (ABDE)

TMSEP,;, = 23.22-1.54(A) -17.76 (B) +22.65(D) +2.29 (E)

+1.27(AB) -1.52(AD) -17.4(BD) -1.8(BE)
+2.3(DE) +1.24 (ABD) -1.77 (BDE)
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Minimum C,.

TMSEP, =

‘+0.79(AB)-0,82(AD)-25.19(BD)-4.08(BE)

37.51-0.84(A) -25.72(B) +36.69(D) +5.86 (E)

(42)

+5.77(DE) +0.77(ABD) -4.0(BDE)

Miller’'s Method.

TMSEP, 11 en =

~25.69(BD) +3.32 (BE) -3 .84 (DE)
!
+3.27 (BDE)

Summary of Effects.

Table 7.

33.02-26.22(B) +32.26 (D) -3.93(E)

(43)

Main Factor Coefficients of Effects by Method for TMSEP

METHOD =~ l Minimum Minimum Minimum Miller'’'s
= o - S
A (ext. vars. ) " - 1.76 - 1.54 - 0.84 0
C (ext. o ) " 0 0 0 0
D (ind. o) [ + 21.6 + 22.65 + 36.69 +32.26
E (sam. size) " + 3.04 + 2.29 + 5.86 - 3.93
F (error oz) ' 0 0 0 0
Intercept (p) " + 22.15 + 23.22 + 37.51 + 33.02
Table 8.
58




Main Factor Effects by Method and Rank Order of Significance
for TMSEP

A (ext. vars.)

“Minimum | Minimum Miller’s
Method

4th 4th No effect

2nd 2nd 2nd

(ind. cérr.)”

B
o (éii@f62)>Jf‘ No effect | No effect No effect | No effect
D (ind. &%) 1st ' 1st . 1st 1st

E 3rd 3rd 3rd 3rd

F

(sam;'éiZe): {

‘(error‘da)’  No effect | No effect No effect | No effect

Al)l Four Methods. The tollowing results

. pertain to all methods:

(1) The higher the correlation among the independent or
correct variables, the better the performance. |
(2) Lower variances in the independent or correct

variables yielded better performancé.

Minimum MSE, Minimum C,, Minimum S, Method.
7Tﬁémf6116w1hq'résﬁltS”Were’additionally obsefved~for these
ﬁethods:

(1) The higher the number of extraneous variables, the
cioser the response value is to its true theoretical value.
(2) Smaller sample sizes give better results.

Miller’s Method. The following additional
results were observed for this method:

(1) Adding extraneous variables causes improvement of

the TMSEP for a model.
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(2) Better performance is obtained with larger sample

-gizes. _

Analysis. As with PM, Box and Whisker élots were em-
ployed to further assess the impact of each factor‘(A, B, C,
D, E, F) on TMSEP for a given method. STATISTIX 4.0 was
also used to produce these Box and Whisker plots by forming
the indicators in the same manner as befofe. A set of
indicator values are created for each of the six factors
studied. The six :esulting plots revealed much about the
ability ot each subset selection technique to create a model

close to the actual model.
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Effect of Factor A on TMSEP by Method

150

120

] -3 -2 - 1 2 3 4
High/low Factor A Groupings by Method
Legend: +..High A, -. .Low A, 1. .MSE, 2..5P, 3..CP, 4,.Mitiery

Figure 8. Box and Whisker Plots Showing the Effect of
Factor A on TMSEP by Method ‘

The number of extraneous variables involved had very
little impact on how close a method came to selecting the ~ e
absolutely correct model. Of the four methods studied,

however, MSE appeérs to perform best.’
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Effect of Factor B on TMSEP by Method

180

120

40

L ] L 1
-4 -3 -2 -1 1 2 BE) 4

High/1ow Factor B Groupings by Method

Legena: o, Migh B, -..MHIGh B, 1. .M5E, 2..5P, 3..CP, 4. . Mlilers

Figure 9. Box and Whisker Plots Showing the Effect of
Factor B on TMSEP by Method '

Clearly tf;e amouht of correlatioa between the correct
variables has a great effect on model accuracy. When the
correct variables are highly éorrelated, one contains almost
all of the information contained in all four of them (in-

cluding the one omitted from the pool).
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Effect of Factor C on TMSEP by Method

150

40 i

-4 ' 2 b |
ﬁﬁﬁwh&wC&mmpwlﬂm

Legend: +..High C, JLow C, 1..MSE, 2..8P, 3,.CP, 4. Millers

J

Figure 10. Box and Whisker Plots Showing the Effect of
Factor C on TMSEP by Method -

Factor C, the variance of the extraneous variables, has

no effect on the accuracy of any method. If the focus was
on selecting the correct variables, it follows that a change

in the extraneous variables would have little effect.
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Effect of Factor D on TMSEP by Method

480

.18

40

Figure 11.

3 -2 1 2 3 1

High/low Factor D Groupings by Nethod

Legend: +..High D, -..Low D, 1. .M3E&, 2..5P, 3..CP, 4, Millers

Box and Whisker Plots Showing the Effect of

Factor D on TMSEP by Method

The variance of the extraneous variables, factor D,

effects the performance of all four methods. Minimum MSE

and Minimum Sp methods appear to be more affected than Mini-

mum C, and Miller’s methods.
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Effect of Factor E by TMSEP by Method

160

420

40

-3 -2 -1 1 H 3

High/Low Pactor E Groupings by Method

Legend: +, High E, -, High €, 1,.MSE, 2..3P, 3..CP, 4..Mitlers

Figure 12. Box and Whisker Plots Showing the Effect of
Factor E on TMSEP by Method

Increasing the sample size, factor E, tends to increase

the variance in the Minimum MSE, Minimum Sp, and Minimum Cp , o

methods. Miller’s method, however, becomes slightly more

consistent.
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Effect of Factor F on TMSEP by Method
160 -
129
M *
*
E L1}

40

-4 . -3 -2 -t ] 2 3 4

High/Low Pactor F Groupings by Metbod

Legend: «..Migh F, - . High ®, 1, MSE, 2..3P, 3..CP, 4. . Millers

Figure 13. Box and Whisker Plots Showing the Effect of
Factor F on TMSEP by Method

The variance of the error term, factor F, has no appar-
ent effect on the accuracy of the four methods studied. All
the method were able to filter out the white noise equally

well.
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V. Conclusions and Recommendations for Further Research

Conclusion

Objective. The objectives of this research were: (1)
identify some promising‘least squares selection procedures
diécussed in the literature, (2) introduce, implement, and
study a variable selection method pfoposed by Alan J. Mill-

er, and (3) make an extension of Hansen’s research by com-

- paring the methods he examined: Minimum MSE, Minimum S,

and Minimum C;, with Miller’s mefhod.

Techniques Studied. The Minimum MSE. Minimum S;, and
Minimum C, variable seiection techniques have received much
praise in the past 20 yeérs. Due to the similafifj ismthé»
Maximum R° criterion and its adjustment for degrees of
freedom, Minimum MSE was ¢onsidered the favored technique
fifteen years ago. More recently Minimum S, and Minimum C,,
both of which are based on MSEP, haye received the majority
of the praise. Of the two, Minimum S, is fﬁerﬁére\practiéal

selectiqn method because it is designed for random |regres-

‘sors (Hansen, 1988:59).

Compared to the three well-known téchniques mentioned
above, Miller’'s method was obscure and untested. A |liter-
ature search revealed only Miller’s original reference to

the procedure. This research has compared and contrasted

‘Miller’s method with the well-accépted techniques, Minimum
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MSE, Minimum S,, and Minimum C;, and thereby defined its
role among current variable screening techniques.
Methodology. To facilitate a comparativé ~nalysis of

Miller’s method and the other methdds, Response Surface

Methodology was employed with twd perfornance measures. The
‘first, designated PM, measured thé peicentage of correct
variables in a model. The second, Theorétical'Mean Squared
Error of Prediction (TMSEP), measured the predictive error

between the model selected and the theoretical model. A 26

full factorial design was setup, yielding the 64 high/low
combinations, or design points, of the six factors beipg
studied. Using Hansen’s data, which had been generated with
60 replications at each design point, both PM and TMSEP were
calculated for each subset seiection method at each design
vpoint. The SAS Stépwise procedure was used to select sig-
nificant factors or factor coﬁbinations at the « = 0.01
level and to generate a linear equation for each combination
of performance measure and selection method. Four of these
leight equations revealed what each of the six factors and
their combinations contributed toward imprbvihg the percent-
age of correct variables (maximizing PM) in a model and the
other four examined how‘the same factors related to minimiz-
ing the error between the modeled response and the theoreti-~
cal response (minimizing TMSEP). STATISTIX 4.0 was then
used to produce Box and Whisker plots by performance measure

and method. These plots revealed factor effects and provid-
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ed a graphical analysis of variance on performance measures.
by method and factor settiﬁgs.

Two-Stage Variable Selection Technique. The data used
in this thesis attempted to simulate real world data.
Extraneous variables wére added and one of the significart ‘
predictors was totally dropped from consideration afterxr:
generating the data. 1In light of these tdﬁgh, inherent data
problems, it was suspected from the beginning of this re-
search effort that a single selection method may not be
effective at both scfeening out the extraneous‘variables and
selecting the final model. rherefore, two performance
‘measures, PM aﬁd TMSEP, were ekamined because they rate
selection methods from different vantage points. 'A selec~
tion technique which rated highly under PM wouid'perform_ |
well as a screening method prior to final vaiiable selec-
tion. During the screening pfocess-the objectivé.is to
select the gréatest number of significant variables (or
correct or true variables) while rejecting any extraneous o

_ones. PM measured how well each method accomplished this. |
On‘the other hand, a selection technique which rated highly ‘ \
under TMSEP would perform the final variable selection :
process well. During the final selection process, a set of ﬂ \
likely predictors is examined and the final subset selectéd. \
One hopes that this final subset of predictbrs has a re;

sponse close to that of the theoretically correct set of

predictors. TMSEP measured the performance of each method




v

in this regard. Note that PM and TMSEP were calculable ohly

because the data for this research was generated by a known

model. 1In practice, PM and TMSEP cannot be calculated. It

was the intention of this research, therefore, to cbserve

“the performance of the fcur variable selection techniques in

question under controlled conditioﬁs and to note the condi-
tions under which they perform best.

In a screening situation where PM would apply, all four
PM equations and a comparison of their regression factor
coefficients indicated that the.number of extraneous vari-
ables (factor A) was the most significant factor, sometimes
by a difference as much as two maghitudes. Box plots of PM

for factor A also revealed that Miller's method had the

‘highest median PM value. The equation for PMyj ;s reveals

why this occurred. PMyn ;s had the highestbintercept value
and the number of extraneous vari‘bles.reduced the perfor-
mance measure by less than half the amount the other PM
equations did for the other methods. Obviously, when se-

lecting the independent or correct variables from a variable

- pool containing extraneous variables, Miller’s method was

the method least affected by the presence of extraneous
variables. Thus Miller’s method is tﬁe best technique for
screening.

Once screéned, the variable pool is ready for final
model selection. As stated previously, a me*hod’s perfor-

mance during this final selection stage is best gauged by
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TMSEP. TMSEP was ﬁrimarily affected by two factors: the
variance of the independent or correct vériables (factdr D)
and the correlation among thg same variables (factor B), as
the all TMSEP equations reveal. The régression coefficients
of factors B, D, and the‘BD interaption were a magnitude
larger than any other coefficients.. Closer examination of
the TMSEP equations showed that when factor D (variance of
the correct variable) was at its low setting,,factole (cor-
relation of the correct variables) cauced about the same
improvement (decrease) of TMSEP at its high and low levels.
When factor D is set high, however, the low sétting of
factor B worsens (increases) TMSEP and fhe high settings of
factor B improves (decreases) TMSEP. The following anﬁlysis
graphically depicts this BD interaction using B+D+BD to
calculate the weights in each quadrant. This explaidS'the

importance of the BD interaction.
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Minimum MSE

(‘111) (111)
~21.94 -11.88
(-1,-1) (1,-1)
-21.26 +55.08
Minimum Cp

—37022 -14-22
(-1,-1) (1,-1)
~36.16 +87.6
Figure 14.

Method

Minimum S,

(-1,1) (1,1)

-23.01 12.51
-22.29 +57.81

Miller’s

(‘111) (111)
-32.79 ~-19.65
(-1,1) (1,-1)
-31.73 +84.17

Graphical‘Analysis of the BD Interaction by

Box plots for factors B and D show that the Minimum MSE

method had the best median TMSEP, followed closely by the

Minimum S, method.

Furthermore, the following box plot for

the BD interaction factor confirms that the Minimum MSE

method would perform best as a final selection technique.
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Figure 15. Box and Whisker Plots Showing the Effect of
Factor BD on TMSEP by Method -//

This research proposes a two-stage variable selection
technique. Miller’s method is used to first screen the
variable pool and reduce the number of extraneous variables.
Next the Minimum MSE method is used to select the model from

this reduced variable pool.

Factor C, the variance of the extraneous variables, had
little or no effect on either PM or TMSEP. It was the only

factor which had no impact throughout this research effort.
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Neither did it appear in any of the PM or TMSEP equations.

Based on these results, this factor could be dropped from
further consideration.

Another useful result 6f this research is the compari-
son of the two MSEP criteria: Minimum S, and Minimum C,.
A great deal of praise has been given to the‘Minimum Sp

criterioh in the past 15 years. It was identified as one of:
the most promising methods when the regressors are random
and one desires to minimize the mean square error of predic-
‘tion. The minimum C, criterion has also received praise for
minimizing mean square error of prediction, but its useful-
ness is limited to cases where the regressors are fixed.
Some have recommended that the Minimum C, criterion not be
used in practice;

‘The results of this thesis indicate that the Minimum Sp
method outperformed the Minimum C, method at every factor
level, using both PM and TMSEP. No evidence was found to
refute the assertion that the Minimum Cp criterion should
not be used in practice. 1In fact, this research effort
supports using Minimum S, method instead of the Minimum C,
method, thereby improving the selection process.

Most other simulations have dealt with the number of
correct variables chosen of those available. No provisions
were made for circumstances in which a significant regfessor

is not included in the variable pool. Therafore, techniques

74




praised as good variable selection techniques may not be as

appealing as originally thought. This appeérs to be the

case with Minimum C,. It should be noted, however, that
Mallows C, method (Cp-close-to-p) is not the same as the

Minimum C, method (Cp-close-to-zero). This Mallows C, meth-

od, as originally proposed, was not studied in this thesis.

Recommendations for Further Research

This research effort lends itself to several follow-on
studies; The methodology established by Hansen and the
computer programming groundwork in this research project
make embellishments‘and the use of more complex model a.
feasible task.

One area which leads to further research deals with
expanding the number of factors under consideration. This
research effort studied six factors, but many more could be
added. The response surface region could be expanded to
include negative correlation, larger sample sizes, and the
spread of the variance on the independent or correct vari-
ables. The factors studied could also include an indicator
variable to keep track of the effect of dropping a sighifi-
cant variable. That is, by including a variable to‘keep
track of the difference between the full model and a model
where a variable is dropped, one could quantify the effects
of failing to collect data on all the significant variables.

This research onlylcollected information on the effects of
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dropping a variable and it was assumed that if all the

variables were present thé techniques studied would perform
better. However, to gain a better understanding of Miller’s
method, it would be worthwhiie to quantify the effects of
not including all significant variables in tne variable .
pool. To implement fhis,‘factor C (the variance of‘the
extraneous variables) which had nn effect, could be replaced
wifh the indicator variable described above. Thus, the
information desired could be gained without increasing the
size of the experimental design.

| Further research could also be done tou address the
question ofvwhich screening and final selection method
combinations work best fogether and under what circumstanc-
es. The four methods studied in this thesis could generate
16 screening and final selection method combinations. Some
of these combinations may be eliminated a priori, but the
rest could be studied either under the original six factors
used in this thesis or under an expanded set of factors.
The number of methods considered could also be increased.
One method which could be added is Mallows C,, as the method
was originally set forth. This would allow a comparison
between Miller’s method and other variable selection tech-
niques not studied in this thesis.

This thesis effort has implemented a promising new

variable selection technique: Miller’s methed. Additional-

ly, by comparing its performance with three well tested
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methods, this research has sei#edAtoksuégest a possible roie
for Miller’s method among the many selection techniques.

The results of this research indicate that Miller's mefhod
may be most effective when used as a screéning methodlprior

to final variable selection.
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Appendix A: Flow Chart for the De velopment of the MSE, Sps
and C.,_PMs

| Legend of Flow Chart Symbols'

~_ Flow of Data |

Programs |

Listing or
Qutput Files
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C]D PM1.dat
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‘ Appendix B: Flow Chart for the Development of the PM for
. ‘ Miller'’'s Method

S ' |
ot.dat _.,ir Stepti_all.sas ———’(Stepﬂ_all.lis

\_31dat . : .
: Step13_all.iis
33.dat L., Step13.all.sas

63.3at — /@epm_amns
02.dat I'-P Step31.all.sas

Lsdat ' Filstepcount.for

18.dat L-> Step32_ali.sas
\‘(Step32 alllis

(_82.dat_J |
34.dat |—> St_ep33_all.sas

48.dat

Step33 all.lis

\
Step34_all.sas ’,__>(Step34 alllis
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Appendix C: Flow Chart for the Development of the MSE, S,,
and C, TMSEPs

O1.dat > TMSEP1_all.sas TMSEP1_alliis

TMSEP.for

. TMSEP3_all.sas —DGASEPa_aII.IiS'( o
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Appendix D: Flow Chart showing the Develogment of TMSEP for

Miller’'s Method
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Appendix E: Flowchart Describing the Experiments Using PM
, and TMSEP

(PM1.dat
(PM3.dat

( PM .mpildat
GMStepa.dat

R
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PM.sas
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(TM.dat /

STATISTIX
4.0

(TMSEPtdat

6MSEP3.dat

: (MulTMtda{

(MIIITMs.dat
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Appendix F: A Glossary of Input/Output Data Files

Used Throughout All Sections

0l.dat, 02.dat,...,64.dat
64 specifically generated data files, one file for each of

the 64 permutations of the six-factors analysis

0l.dat, 03.dat,...,63.dat
Of the 64 files, these are the ones with one extraneous

variable

02. dat, 04. dat,...,64 dat
Of the 64 files, these are the ones with three extraneous

variables

Temp.dat
Scratch file used to pass 1arge amounts of data between

FORTRAN main routines and their associated subroutines.
Always contains temporary data generated by the most recent-
ly executed FORTRAN program.

Calculating PM for MSE, SP and CP methods

Errorl_all.lis
Listing generated by SAS program Errorl _all.sas. Contains

output from the procedure RSquare (options MSE, SP, CP) run
on 1920 data sets with one extraneous variable.

Error3 all lis

Listing generated by SAS program Errorl all.sas. Contalns e e

output from the procedure RSquare (options MSE, SP, CP} run
on 1920 data sets with three extraneous variables.

Errorl all.dat
Output™ from the FORTRAN subroutine Countl.for. Contains the

selected model according to the MSE, SP, and CP methods for
each of the 1920 data sets with one extraneous variable.

Error3_all.dat
Output irom the FORTRAN subroutine Count3.for. Contains the

selected model according to the MSE, SP, and CP methods for
each of the 1920 data sets with three extraneous variables.

PMl.dat
Output from the FORTRAN subroutine Countl.for. Contains
performance measures at each of the 32 odd design points
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(1,3,...,63) for the MSE, SP, and CP methods of variable
selection. -

.PM3.dat

Output from the FORTRAN subroutine Count3.for. Contains

performance measures at each of the 32 even design points
(2,4,...,64) for the MSE, SP, and CP methods of variable

selection.

Calculating PM for Miller'’s methcd

Stepll all.lis

Listing generated by SAS program Stepll_all.sas. Contains
output from the procedure Stepwise(Forward Selection) run on
960 data sets (1,3,...,31) with one extraneous variable.

Stepl3_all.lis

Listing generated by SAS program Stepll all.sas. Contains
output from the procedure Stepwise(Forward Selection) run on
960 data sets (33,35,...,63) with one extraneous variable.

Step31 all.lis

Listing generated by SAS program Step3l _all.sas. Contains
output from the procedure Stepwise(Forward Selection) run on
480 data sets (2,4,...,16) with three extraneous variables.

Step32 all.lis

Listing generated by SAS program Step32_all.sas. Contains
output from the procedure Stepwise(Forward Selection) run on
480 data sets (18,20,...,32) with three extraneous vaxl-

ables.

Step33__ all lis

Listing generated by SAS program Step33 all.sas. Contains
output from the procedure Stepwise(Forward Selection) run on
480 data sets (34,36,...,48) with three extraneous varl- '
ables.

Step34_all. lis

Listing generated by SAS program Step34_all.sas. Contains
output from the procedure Stepwise(Forward Selection) run on
480 data sets (50,52,...,64) with three extraneous vari-~
ables.

Stepl_Input.dat

Input data file for FilStepCount.for. Contains the names of
the SAS listing files (from data sets with one extraneous
variable) that FilCount.for is to process.
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~ Step3_Input. dat .

Input data file for FllStepCount for. Contains the names of
the SAS listing files (from data sets with three extraneous
varianles) that FilCount.for is to .process.

Stepl_all.dat

- Generated by FORTRAN subroutine StepCountl.for. Contains

the model selected via Miller’s method for each of 1920 data
sets with one extraneous variable. '

Step3_all.dat
Generated by FORTRAN subroutine StepCount3.for. Contains

the model selected via Miller’s method f each of 1920 data
sets with three extraneous wvariables.

PMStepl.dat : ‘
Output from the FORTRAN subrouti-: StepCountl.for. Contains

performance measures at each of the 32 odd design points
(1,3,...,63) for the Miller’s method of variable selection.

. PMStep3.dat

Output from the FORTRAN subroutine StepCount3.for. Contains
performance measures at each of the 32 even design points
(2,4,...,64) for the Miller’s method of variable selection.

Stepwise Analysis using PM for each method

PM.dat
Output from the statistical analysis-program STATISTIX 4.0.

Contains the design point four golumns of PMs (one for each
method) augmented with a full 2" factorial design matrix.
This file is then used as input to the SAS program PM.sas.

PM.lis . A ' ' . e

Listing f11e generated by ‘the SAS program ‘PM.sas. Contains
the complete analysis from the procedure Stepwise. Attempts
a best fit for each method’s PM as a linear function of the
six factors studied and their interactions.

Calculating TMSEP for MSE, SP and CP methods

TMSEP1_all.lis o
Listing generated by SAS program TMSEP1 _all.sas. Contains

output from the procedure RSquare (options MSE, SP, CP, and

B) run on 1920 data sets with one extraneous variable.

TMSEP3_all.lis
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Llstlng generated by SAS program TMSEP3 all.szas. Contains
output from the procedure RSquare (options MSE, SP, CP, and
B) run on 1920 data sets with one extraneous variable.

TMSEPl dat

‘Generated by FORTRAN subroutine TMSEPl.for. Contains the

TMSEPs for the 32 odd de81gn points (1, 3,...,63) with one
extraneous variable. -

TMSEP3.dat : .

Generated by FORTRAN subroutine TMSEP3.for. Contains the
TMSEPs for the 32 even design p01nts (2, 4,...,64) with three
extraneous variables.

Calculating TMSEP for Miller’s method

MillerlBeta.sas

Generated by FORTRAN program MillSAS.for. This is a SAS
input program design to calculate the constant and the
coefficients of regression for each of the 1920 models
selected using Miller’s method and data sets with one extra-
neous variable.

Miller3Beta.sas

Generated by FORTRAN program MillsSAS.for. This is a SAS
input program design to calculate the constant and the
coefficients of regression for each of the 1920 models
selected using Miller’s method and data sets with three
extraneous variables. :

MillerlBeta.lis

Listing file generated by the SAS program MillerlBeta.sas.
Contains the unformatted and unfiltered data on the constant
and the coefficients of regression for each of the 1920
models selected using Miller’s method and data sets with one
extraneous variable.

Miller3Beta.l

Listing file generated by the SAS program Miller3Beta.sas.
Contains the unformatted and anfiltered data on the constant
and the coefflﬁlents of regression for each of the 1920
models selected using Miller'’s method and data sets with
three extraneous variables.

MillerlBeta.dat

Generated by the FORTRAN subroutine Betal.sas. Contains the
filtered and formatted data on the constant and the coeffi-
cients of regression for each of the 1920 models selected
using Miller’s method and data sets with one extraneous
variable.
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Miller3Beta.dat : :
Generated by the FORTRAN subroutine Beta3.sas. Contains the

filtered and formatted data on the constant and the coeffi-
cients of regression for each . the 1920 models selected
using Miller’s method and data sets with three extraneous

variables.

MillTM1l.dat ‘ . _
Generated by the FORTRAN subroutine MillTMl.for. Contains

the TMSEPs for the odd design points (1,3,...,63) with one
extraneous variable.

MillTM3.dat
Generated by the FORTRAN subroutine MillTM3.for. Contains

the TMSEPs for the odd design points (2,4,...,64) with three
extranecus variables. o

Stepwise Analysis using TMSEP for each method

TM.dat
Output from the statistical analysis program STATISTIX 4.0.

" Contains the design point four columgs of TMSEPs (one for
each method) augmented with a full 2" factorial design
matrix. This file is then used as input to the SAS program
. TM.sas. ' ‘

T™M.1lis :

Listing file generated by the SAS program TM.sas. Contains
the complete analysis from the procedure Stepwise. Attempts
a best fit for each method’s TMSEP as a linear function of
the six factors studied and their interactions.
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Appendix C: A Glossary of FORTRAN Pr.gram Files

Calculating PM for MSEl SP _and CP methods

FilCount.for
PURPOSE: Filters the SAS RSquare listings and generates the
formatted file Temp.dat of all the possible model combina-

tions for each of the 3840 data set. Calls Countl and
Count3 to select the best model.

INPUT DATA FILES: Errorl_all.lis, Error3_all.lis
OUTPUT DATA FILES: Temp.dat

SUBROUTINES CALLED: Countl.for, Count3.for

Countl.for

PURPOSE: Selects the best model for each of the 1920 data
sets (one ex.raneous variable) from a file of all possible
‘model combinations for each set. Uses the MSE, SP, and CP
methods of variables selection. Calculiates a performance
measure for each of the three groups of 60 mcdels selected
at each of the odd design points (1,3,...,63).

INPUT DATA FILES: Temp.dat
OUTPUT DATA FILES: Errorl_all.dat, PMl.dat

SUBROUTINES CALLED: None

Count3.for

PURPOSE: Selects the best model for each of the 1920 data
sets (three extraneous variables) from a file of all possi-
ble model combinations for each set. Uses the MSE, SP, and
CP methods of variakles selection. Calculates a performance

measure for each of the three groups of 60 models selected
at each of the even design points (2,4,...,64).

INPUT DATA FILES: Temp.dat
OUTPUT DATA FILES: Error3_all.dat, PM3.dat

SUBROUTINES CALLED: None
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Calculating PM for Miller'’s method

FilStepCdunt.for »
PURPOSE: Filters the SAS Stepwise(Forward Selection) list-
ings and generates the formatted file Temp.dat of the model
selected for each of the 3840 data sets. Calls Stepcountl
and Stepcount3 to select the best models.
INPUT DATA FILES: Stepll_all.lis, Stepl3_all.lis,
Step31 . “all.lis, Step32_. “ali.lis,

Step33_, “all.lis, Step34_. Tall.lis
Stepl Input dat, Step3 Input.dat

OUTPUT DATA FILES: Temp.dat

SUBROUTINES CALLED: Stepcountl.for, Stepcount3.for

StepCountl. for
PURPOSE: Implements Miller’s method for each of the 1920
models (from data sets with one extraneous variable).
Calculates a performance measure for eacli group of 60 models
selected at each odd design point (1,3,...,63).

INPUT DATA FILES: Temp.dat

OUTPUT DATA FILES: Stepl_all.dat, PMStepl.dat

SUBROUTINES CALLED: None

StepCount3.for
PURPOSE: Implements Miller’s method for each of the 1920
models (from data sets with three extraneous variables).
Calculates a performance measure for each group of 60 models
selected at each even design point (2,4,...,64).

INPUT DATA FILES: Temp.dat

OUTPUT DATA FILES: Step3_all. dat, PMStep3 dat

SUBROUTINES CALLED: WNone
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Calculating P _for MSE, SP and CP methods

TMSEP. for

PURPOSE: Filters the SAS RSquare listings and generates the
formatted file Temp.dat of all the possible model coumbina-
tions for each of the 3840 data set. Calls TMSEPl and
TMSEP3 to select the best model. :

INPUT DATA FILES: TMSEP1 all.lis, TMSZP3_all.lis
OUTPUT DATA FILES: Temp.dat

SUBROUTINES CALLED: TMSEPl.dat, TMSEP3.dat

TMSEPl.for

PURPOSE: Selects the best model for each of the 1920 data
sets (one extraneous variable) from a file of all possible
model combinations for each set. Uses the MSE, SP, and CP
methods of variables selection. Using each of the data sets
with one extranecus variable, it calculatcs a TMSEP for each
of the three groups of 60 mcdels selected at each of the odd
design points (1,3,...,63). ”

INPUT DATA FILES: 0l.dat, 03.dat,...,63.dat, Temp.dat
OUTPUT DATA FILES: TMSEPl.dat

SUBRCUTINES CALLED: None

TMSEP3. for

PURPOSE: Selects the best model for each of the 1920 -data
sets (three extraneous variables) from a file of all possi-
ble model comuinations for each set. Uses the MSE, SP, and
CeP methods of variables selection. Using each of the data
sets with three extraneous variables, it calculates a TMSEP
for each of the three groups of 60 models selected at each
of the even design points (2,4,...,64).

INPUT DATA FILES: 02.dat, 04.dat,...,64.dat, Temp.dat
OUTPUT DATA FILES: TMSEP3.dat

SUBROUTINES CALLED: None
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Calculating TMSEP for Miller’s method

MillSAS.for
- PURPOSE: Reads the 3840 moriels (selected by Miller’s method)
and generates SAS code, specific to each model, to estimate

the constant term and tie coefficients of regression for
that model. '

INPUT DATA FILES: Stepl_all.dct, Step3 all.dat
OUTPUT DATA FILES: MillerlBeta.sas, Miller3Beta.sas

SUBROUTINES CALLED: None

MillBeta.ior

PURPOSE: Calls Betai and Beta3 and then calls MillTMl and
MillTM3. :

INPUT DATA FILES: None
OUTPUT DATA FILES: None

SUBROUTINES CALLED: Betal.for, Beta3.for,
‘ MillTMl.for, MillTM3.for

Betal.for

PURPOSE: Filters the unformatted SAS listing file produced
by the SAS program MillerlBeta.sas (from data sets wita one
extraneous variable) and outputs the estimates of the 1odel
constant and regression coefficients in a sorted, formatted
order.

INPUT DATA FILES: MillerlBeta.lis
OUTPUT DATA FILES: MillerlBeta.dat
SUBROUTINES CALLED: None

Betal.for
PURPOSE: Filters the unformatted SAS listing file produced

by the SAS program Miller3Beta.sas (from data sets with
three extraneous variables) and outputs the estimates of the
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model constant and regression coefficients in a sorted,
formatted order.

INPUT DATA FILES: Miller3Beta.lis
OUTPUT DATA FILES: Miller3Beta.cat

SUBROUT”NES CALLED: None

MillTMl. for

PURPOSE: At each of the 32 odd design points (1, 3,...,63

the ones with only one extraneous variable) it examines each
of the 60 model preﬂlcted and calculates a aggregated TMSEP
for that design point.

INPUT DATA FILES: MillerlBeta.dat, Ol.dat,....,63.dat
OUTPUT DATA FILES: MillTMl.dat

SUBROUTINES CALLED: None

MillTM3.for

PURPCSE: At each of the 32 even design points (2,4,...,64,
the ones with only three extraneous variables) it examines
each of the 60 model predicted and calculates a aggregated
TMSEP for that design point.

INPUT DATA FILES: Miller3Beta.dat, 02.dat, 04.dat,.-
L] .’Gd.dat

OUTPUT DATA FILES: MillTM3.dat

SUBROUTINES CALLED: None

BARR.FOR

PURPOSE: Written to read and correct most errors found in
Hansen’s data files. It was written by Dr. David Barr. It
scans the data file after correction and outputs certein
data characteristics for verification. Some errors had to
be corrected by hand, but this program will allow the exper-
imenter to be absolutely certain about the data’s current
characteristics.
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Appendix H: . A Glossary of SAS Program Files

Calculating PM for MSE, SP and CP methods

Errorl all.sas

Reads 0l1.dat,03. dat,...,63 dat by set and use the RSquared
procedure to generate all-possible models for each set of 10
or 20. MSE, SP, and CP statistics are calculated for each
model. The listing file Errorl_all.lis is output.

Error3 all.sas
Reads 02.dat,04.dat,...,G4.dat by set and use the RSquared

~ procednre to generate all-possible models for each set of 10
or 20. MSE, SP, and CP statistics are calculated for each
mcdel. The listing file Error3_all.lis is output.

Calculating PM fo: Miller’s method

Stepll all.sas
Reads 0l.dat,03.dat,...,31.dat by set and augments each set

with four known random predictors. The Stepwise procedure
~is than run and one model is chosen for each set. The
listing Stepll_all.lis is generated.

Stepl3 all.sas

Reads 33.dat,35.dat,...,63.dat by set and augments each set
with four known random predlctors. The Stepwise procedure
is than run and one model is chosen for each set. The
listing Stepl3_all.lis is generated.

Step3l all.sas

Reads 02.dat,04. dat,...,16 dat by set and augments each set
with six known random predictors. The Stepwise procedure is
than run and one model is chosen for each set. The listing
Step31l_all.lis is generated.

Step32 all.sas

Reads 18.dat,20.dat,...,32.dat by set and augments each set
with six known random predlctors. The Stepwise procedure is
than run and one model is chosen for each set. The listing
Step32_all. 113 is generated.

Step33 all. sas
Reads 34.dat,36. dat,...,48 dat by set and augments each set
with six known random predlctors. The Stepwise procedure is
than run and one model is chosen for each set. The listing
Step33_all.lis is generated.
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'Step34 all.sas

Reads 50.dat,52.dat,...,64.dat by set and augments each set
with six known random.predictors. The Stepwise procedure is
than run and one model is chosen for each set. The listing
Step34_all.lis is generated.

Stepwise analysis using PM for each method

PM.sas

Reads PM.dat and performs four separate Stepwise regres-
sions. Each regression considers a differsnt dependent
variable but the uses the same 1ndependent variables.
Generates listing file PM.lis

Calculating TMSEP for MSE, SP and CP methods

TMSEP1 all.sas

Reads 0l.dat,03. dat,...,63 dat by set and usa the RSquared
procedure to generate all-possible models for each set of 10
or 20. MSE, SP, and CP statistics and the coefficients of
regression are calculated for each model. The listing file
TMSEPl_all.lis is output.

TMSEP3 all.sas

Reads 02.dat,04.dat,...,64.dat by set and use the RSquared
procedure to generate all-possible models for each set of 10
or 20. MSE, SP, and CP statistics and the coefficients of
regression are calculated for each model. The listing file
TMSEP3_all.lis is output.

Calculating TMSEP for Miller’s method

MillerlBeta.sas

Reads 0l.dat, 03. dat,...,63 dat by set and uses the RSquared
procedure (w1th various switches) to calculate the coeffi-
cients of regression for only the model selected for each
data set by Miller’s method. The listing file MillerlBeta-
.lis is generated.

Miller3Beta.sas

Reads 02.dat, 04. dat,...,64 dat by set and uses the RSquared
procedure (with various switches) to calculate the coeffi-
cients of regression for only the model selected for each
data set by Miller’s method. The listing file Miller3Beta-
.lis is generated. - '
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Stegwisé analysis using TMSEP for each method

TM.sas

Reads TM.dat and performs four separate Stepwise regres-
Each regression considers a different dependent
variable but the uses the same independent variables.

sions.

Generates listing file TM.lis.
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Appendix I: FORTRAN Programs

"BARR.FOR .+ o o« o

BETAl.FOR . . . .

BETA3.FOR . . . .

, COUNTl L] FOR . * L]

COUNT3.FOR . . .
FILCOUNT.FOR . .
FILSTEPCOUM(.FOR
MILLBETA.FOR . .

MILLSAS.FOR . . .

MILLTM1.FOR . . .

MILLTM3.FOR . .

~ STEPCOUNT1.FOR .

STEPCOUNT3.FOR .
TMSEP.FOR . . . .
TMSEP1.FOR . . .

. TMSEP3.FOR . . .

List of FORTRAN Programs
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BARR.FOR.

This program reads in Hansen’s data files and scans them
for certain data characteristics. These are output for

verification.
************************************************************

real x(4),ex(3)
integer n,set,count,ind(6), lnum,nex ss nexref(2)
integer lecount hecount, lxcount hxcount
double precision
+ errorsum,error2sum lerrorsum lerror23um
double precxslon exsum(3), ex2sum(3) xsum(4), x23um(4)
double prec151on herrorsum herror25um,1exsum lex2sum
double precision .
+ hexsum,hex2sum, lxsum,lx25um,hxsum hx2sum
double precision
+ xprod(4,4),1lxsum,lx2sum, hxsum hx2sum,
+ error .
character+*6 nameofflle(64)

nameoffile(l)='01.dat’

nameoffile(2)='02.dat’

nameoffile(3)='03.dat"’

nameoffile(4)=’04.dat’

nameoffile(5)=’'05.dat’

nameoffile(6)='06.dat’

nameoffile(7)='07.dat’

nameoffile(8)='08.dat’

nameoffile(9)=’'09.dat’

nameoffile(10)=’10.dat’
nameoffile(ll)=’1l1l.dat’
nameoffile(12)=’12.dat’

- nameoffile(13)='13.dat’ .
T nameoffile(14)='14.dat’ - oo o

nameoffile(15)='15.dat’
nameoffile(16)=’16.dat’
nameoffile(17)=’17.dat’
nameoffile(18)=’18.dat’
nameoffile(19)='19.dat’
nameoffile(20)=’'20.dat’
nameoffile(21)='21.dat’
nameoffile(22)='22.dat’
nameoffile(23)='23.dat’
nameoffile(24)='24.dat’
nameoffile(25)='25.dat"’
nameoffile(26)=’26.dat’
nameoffile(27)='27.dat’
nameoffile(28)='28.dat’
nameoffile(29)='29.dat’
nameoffile(30)='30.dat’
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nameoffile(31)=’31l.dat’
nameoffile(32)=’32.dat’
nameoffile(33)='33.dat’
nameoffile(34)='34.dat’
nameoffile(35)=’35.dat’
nameoffile(36)=’36.dat’
nameoffile(37)='37.dat’
nameoffile(38)=’38.dat’
nameoffile(39)='39.dat’
nameoffile(40)='40.dat’

nameoffile(41)='41.dat’

nameoffile(42)='42.dat’
nameoffile(43)='43.dat"’

nameoffile(44)='44.dat’

nameoffile(45)='45.dat’
nameoffile(46)='46.dat’
nameoffile(47)='47.dat’
nameoffile(48)='48.dat’
nameoffile(49)='49.dat’
nameoffile(50)=’50.dat’

nameoffile(51)='51.dat’

nameoffile(52)='52.dat’
nameoffile(53)='53.dat’
nameoffile(54)='54.dat’
nameoffile(55)='55.dat’
nameoffile(56)='56.dat’
nameoffile(57)='57.dat’
nameoffile(58)='58.dat"’
nameoffile(59)='59.dat"’
nameoffile(60)='60.dat’
nameoffile(61)='61.dat’
nameoffile(62)="62.dat’
nameoffile(63)='63.dat’
nameoffile(64)='64.dat’
nexref(1)=1

nexref(2)=3

1000 format(5x,4(£15.5,1x))

open(unit=8,file='ivl.out’,status='new’)
open{unit=9.file=’iv0.out’,status='new’)
open(unit=11,file='dbarr.out’,status='new’)
open(unit=12,file='dbarr.log’,status='new’)

k=64
ind(3)=0
ind(4)=0
ind(5)=0
ind(6)=0
count=0
lxcount=0
hxcount=0
lecount=0
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hecount=0
1xsum=0
1x2sum=0
‘hxsum=0
hx2sum=0
lerrorsum=0 -
lerror2sum=0
herrorsum=0
herror2sum=0

P I 222222222222 XXX IAY I 2SS AR 222 2 2 2 22 X 2R 2 R R 2] 2

do 10 inum=1,k

errorsum=0
error2sum=0

do 11 ill=1,3

exsum(ill)=0

ex2sum(ill)=0
11 continue

do 12 il2=1,4

xsum(il2)=0

x2sum{il2)=0
12 continue |

do 13 il3=1,4
do 14 il4=1,4
xprod(il3,il4)=0
14 ' continue :
13 continue

print *, nameoffile(inum)
write(1ll,*) nameoffile(inum)

write(12,*) nameoffile(inum) .

ind(1)=inum+1-2*((inum+1)/2)
ind(2)=iabs(2*((inum+3)/4)~-((inum+1)/2)-1)
ind(3)=iabs(2*((inum+7)/8)-((inum+3)/4)~1)
ind(4)=iabs(2*((inum+15)/16)-( (inum+7)/8)-1)
ind(5)=iabs(2*((inum+31)/32)-((inum+15)/16)~-1)
ind(6)=iabs(2*((inum+63)/64)~-((inum+31)/32)-1)
nex=nexref (ind(1)+1) .

open(unit=10,file=nameoffile(inum),status='0ld’)

if (ind(5).eq.0) then
ss=10 .

else

ss=20

endif
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50

10

n=ss*60
do 50 h= 1,n
read (10,*) set,y, (x(i),i=1,4), (ex(i),i=1,nex)

count=count+1

if(ind(6).eq.0) then

lecount=lecount+l

else

hecount=hecount+1

endif

++++4+

if(nex.eq.1l) then

ex(2)=0
ex(3)=0
endif

call errorcomp(x,y,error,errorsum,error2sum)
call extra(nex,ex,exsum,ex2sum)
call xi(x,xsum,x2sum,xprod)

write(1ll,*) set,y,error,(x(i),i=1,4),(ex(i),i=1,3),

(ind(7-i),i=1,6)

continue

call : .
endprint(n,ind, nex, ss,errorsum,error2sum,lerrorsum,
lerror2sum, exsum,ex2sum,xsum,x2sum,xprod, herrorsum,

"herror2sum,

lxsum, 1x2sum, hxsum, hx2sum, 1xcount,
hxcount ,nameoffile, inum)
continue

L2 I 2222222222 22X 2R 2222222 222 2Rl 2 222 a2 R X 2 R 2 8]

print*, ' ¢

write(12,*) * *

print *, ’‘number of observations = ’,count
write(12,*) ’'number of observations = ’,count

print *, ’‘small independent variance = ‘,
1x2sum/ (1lxcount)-(1lxsum/(1lxcount) ) **2

print *, ’‘large independent variance = ’,
hx2sum/ (1xcount)-(hxsum/ (1lxcount) ) **2
write(12,*) ’small independent variance = ’,
1x2sum/ (1lxcount)~({lxsum/(lxcount) )**2
write(12,*) ’'large independent variance = ',
hx2sum/ (hxcount ) - (hxsum/ (hxcount))**2

print *, ’‘small error variance = 7,
lerror2sum/lecount~(lerrorsum/lecount)**2
write(12,*) ‘small error variance = ’,
lerror2sum/lecount-(lerrorsum/lecount ) **2
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+

&+

14

print *, ’large error variance = ’,
herrorZSum/hecount-\herrorsum/hecount)**2
write(12,*) ‘large error variance = ',

herrorZSum/hecount-(herrorsum/hedount)**2

END

‘************************************************************

60

50

subroutine errorcomp(x,y,€~ror,errorsum,error2sum)

double precision error,errorsum,error2sum
real x(4)

yactual=0

+4+++

+
+ .
+

do &0 p=1,4
yactual = yactual+x(p)
continue
error=y-yactual
errorsum=errorsum+error
error2sum=error2sum+error*error

return
END |

- dhkkhdhhkhkhk ************************************************

subroutine endprint(n,ind,nex,ss,errorsum,error2sum,
lerrdrsum,1error28um,exsum,ex23um xsum,stum,xprod,
herrqrsum,herrorZsum,

1xsum,1x23um hxsum,hx2sum, 1xcount,

hxcount, nameofflle,lnum)

integer n,ird(6),nex,ss,lxcount,hxcount,inum
double precision errorsum,error2sum,lerrorsum,
lerrJrZsum,exsum(B),exZSum(3),xsum(4),x2sum(4),
xprod(4,4),r(4,4),v(4) ,herrorsum,herror2sum,ev(3),
1xsum,l1x2sum, hxsum, hx2sum,rsum,exl, ex?2
character*6 nameoffile(64)

1000 format(Ex,4(£15.5,1x))
1010 format(5x,4(il0,1x))

print *, (ind(7-i),i=1,6)
write(12,*) (ind(7-i),i=1,6)
print *, * ’,ind(1),’ there are ’,nex,’ extraneous

variables’
write(12,*) * .’,ind(1),’ there are ’,nex,’ extraneous

variables’

do 50 k=1,4
v(k)=x2sum(k)/n-(xsum(k)/n)**2
continue
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40
30

35

10

rsum=0

do 30 i=1,4

do 40 j=1,i

rn=xprod(i,j)/n-(xsum(i)/n)*(xsum(j)/n)
r(i,j)=rn/sqrt(v(i)*v(j))
r(j,i)=r(i,3j)

if(i.ne.j) then
rsum=rsum+r(i,j)

endif

continue

continue

print *, ' ’,ind(2),’' correlation ’,rsum/6

write(1l2,*) * ¢,ind(2),’ correlation ’,rsum/6

do 35 i=1,4

print *, (r(i,j),j=1,4)

write(12,1000) (r(i,j),j=1,4)
continue :

ex1=0
ex2=0
do 10 j=1, nex
ev(j)=ex2sum(j)/n-(exsum(j)/n)**2
exl=exl+exsum(j)
ex2=ex2+ex2sum(j)
continue
ve=(ex2/(n*nex) )-(exl/(n*nex) ) **2
print *, * ’,ind(3),’ variarce of extraneous ‘,ve
write(12,*) ’ ’,ind(3),’ variance of extraneous ’,ve
print *, (ev(kj),k=1,nex) '
write(12,1000) (ev(k),k=1,nex)
write(12,1000) (exsum(i),i=1,nex)
write(12,1000) (ex2sum(i),i=1,nex)
write(12,1010) n,n*nex

xl=xsum(1l)+xsum(2)+xsum{3)+xsum(4)

- x2=x2sum(1l)+x2sum(2)+x2sum(3)+x2sum(4)

vx=x2/(4*n)-(x1/(4*n))**2
print *, * ’, ind(4),’ variance of independent ’,vx
write(12,*) * *, ind(4),’ vqriance of independent ’,vx

if(vx.1t..00125) then
1xsum=lxsum+x1l
1x2sum=lx2sum+x2
lxcount=1xcount+4+*n
write(9,*) nameoffile(inum),ind(4),
+ x2/(4*n)-(x1/(4*n))**2
else




hxsum=hxsum+x1

hx2sum=hx2sum+x2
hxcount=hxcount+4*n
write(8,*) nameoffile(inum),ind(4),
x2/(4*n)-{x1/(4*n))**2
endif

print *, ’ ’,ind(5),’ the sample size is ’,ss

 write(12,*) ’ ’,ind(5),' the sample size is ’',88

print *, ’ ’,ind(6),’ error variance =',

.+ error28um/n-(errorsum/n)**2

write(12,*) ‘ ’,ind(6),’ error variance =',

+ error2sum/n-(errorsum/n)**2

if(ind(6).eq.0) then
lerrorsum=lerrorsumterrorsum
lerror2sum=lerror2sumt+error2sum
else
herrorsum=herrorsum+errorsum
herror2sum=herror2sumt+error2sum
endif

close (unit=10)
return
END

ITZZIXYXISESIR IS SIS XSS 2SR R2 2222 X222 R a2 ts s o s d Rttty
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subroutine extra(nex,ex,exsum,ex2sum)
integer nex

real ex(3)

double precision exsum(3) ex25um(3)
do 10 i=1,nex
exsum(l)—exsum(1)+ex(1)
ex2sum(1)-ex25um(1)+ex(1)*ex(l)
continue :

return

END

************************************************************

20
10

30

subroutine xi(x,xsum,x2sum,xprod)
real x(4)

double precision xsum(4),x2sum(4),xprod(4,4)
do 10 i=1,4

xsum(1)-xsum(i)+x(i)

do 20 j=1,4
xprod(l,J)=xprod(1,j)+x(1)*x(3)
continue
continue

do 30 k=1,4

x2sum(k)=xprod(k, k)
continue
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return

END :
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SUBROUTINE BETAl

INTEGER VARNUM,MODELNUM,J,K,L,N,P,TOTALLINES, CHARPOS
. REAL R2, BO, BETA(4), SORTED_BETAS(4)

 CHARACTER*132 T.INE
CHARACTER*2 MODEL(4)

TOTALLINES=0
OPEN (unit=10, file='millerlbeta.lis’,status='OLD’,

+ iostat=IERROR,err=1500)
OPEN (un1t=11, f11e=’m111er1beta dat’,status='NEW’,

4 _ lostat-IERROR err=1500)

900

10

902

CONTINUE -
READ (10,90C,END=888) LINE
FORMAT (A132)

DO 10 J=1,132 S
"~ "IF (LINE(J:J).EQ. 'I') THEN
CHARPOS = J
GO TO 20
ENDIF
CONTINUE
GO TO 5

CONTINUE

DO 35 L=1,4
SORTED BETAS(L)=0 0
BETA(L}=0.0
CONTINUE

IF ((LINE((CHARPOS+1):(CHARPOS+1))).EQ.’N’) THEN
READ (10,*)
READ (10,*,END=1300) VARNUM, R2, BO
VARNUM = VARNUM-1
IF (VARNUM.GT.0) GO TO 120
WRITE (11,902) VARNUM, BO
FORMAT
+(1x I1,5X,F9.5, 7x, 0.00000’,7X,*0.00000’,7X, '0.00000",
7X,0.00000")
TOTALLINES=TOTALLINES+1

ELSE
IF ((LINE((CHARPOS+1):(CHARPOS+1))).EQ.'n’) THEN
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s

30

40

901

888

1000

1100

1200

K=1

DO 30 J=CHARPOS,132

IF(((LINE(J:J)).EQ.’X’).OR. ((LINE(J:J)).EQ.‘E"))
THEN

MODEL(K) = LINE(J:(J+1))
K = K+1
ENDIF
CONTINUE
MODELNUM = K-1
IF (MODELNUM.LT.1l) GO TO 1100
READ (10,*)
VARNUM=0 ]
READ (10,*,END=1300)VARNUM, R2,
BO, (BETA(N),N=1, VARNUM)
IF (VARNUM.NE.MODELNUM) GO TO 1000

DO 40 P=1,VARNUM
IF (MODEL(P).EQ.’X1’) SORTED_ BETAS(1)=BETA(P)
IF (MODEL(P).EQ.’X2’) SORTED BETAS(2)=BETA(P)
IF (MODEL(P).EQ.’X3’) SORTED BETAS (3)=BETA(P)
IF (MODEL(P).EQ.’El’) SORTED_BETAS(4)=BETA(P)
CONTINUE

WRITE (11,901) VARNUM, BO,(SORTED BETAS(N),N=1,4)
FORMAT(1X,I1,5X,F9.5,5X,F9.5,5X,F9.5,5%,F9.5,5X,F9.5)
TOTALLINES = TOTALLINES+1
ENDIF
ENDIF
GO TO 5

CONTINUE

CLOSE(10)

CLOSE(11) ,

PRINT *, 'FILTERING OF MILLERIBETA.LIS IS COMPLETE.’
PRINT *, TOTALLINES,’ LINES WRITTEN TO
MILLER1BETA.DAT.’

PRINT *,’ '

GO TO 1600

CONTINUE
PRINT *, 'Unexpected file formatl!’,
' # of variable names does not’,
‘correspond to # of varibles read.’
GO TO 1600

CONTINUE
PRINT *,’Unexpected file format!’,
' Could not find X1, X2, X3, or El.’
GO TO 1600
CONTINUE
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N

1300

1500

1501
1600

PRINT *, ‘Unexpected file format! Expecting ONLY BO."

GO TO 1600

+++

CONTINUE |
PRINT *, ’Unexpected file format! Encountered EOF

while ‘,
‘attempting to read VARNUM, R2, B0, and/or

Betas.’
GO TO 1600

CONTINUE
PRINT 1501,'+++ ERROR WHILE OPENING FILE +++',
error code = ’,IERROR

FORMAT (/1X, A/ 1X, A, 18/)

CONTINUE
END
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SUBROUTINE BETA3

INTEGER VARNUM,MODELNUM,J,K,L,N,P, TOTALLINES,C3ARPOS
REAL R2, BO, BETA(6), SORTED_BETAS(6)

CHARACTER*132 LINE
CHARACTER*2 MODEL(6)

TOTALLINES=0

OPEN (unit=12, file='miller3beta.lis’,status='OLD’,

+ iostat=IERROR,err=1500)
. OPEN (unit=13, f11e-'m111er3beta dat’,status='NEW’,
P + iostat=IERROR,err=1500)
5 CONTINUE

READ (12,900,END=888) LINE
900 FORMAT (A132)

PO 10 J=1,132
IF (LINE(J:J).EQ.’I’) THEN
CHARPOS = J
GO TO 20
ENDIF
10 CONTINUE
GO TO 5

20 CONTINUE

DO 35 1=1,6
SORTED BETAS(L) =0.0
BETA(L)=0.0
35 CONTINUE

- IF ((LINE((CHARPOS+1):(CHARPOS+1))).EQ.’N’) THEN
~. READ (12,*)
READ (12,*,END=1300) VARNUM, R2, Bf
VARNUM = VARNUM-1
IF (VARNUM.GT.0) GO TO 1200
WRITE (13,902) VARNUM, BO

. 902 FORMAT (1X,I1,5X,F9.5,7X,0.00000,7X,’0.00000’,
+ 7X, 10.000007,7X, *0.00000",7X, - 0.00000",
+ 7X,’0.00000")

- TOTALLINES=TOTALLINES+1
ELSE
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P

30

40

901

888

11000

1100

IF (
K=

(LINE ( (CHARPOS+1) : (CHARPOS+1))) .EQ.’n’) THEN
{ :
DO 30 J=CHARPOS,132.
" IF (((LINE(J:J)).EQ.’X’').OR.((LINE(J:J)).EQ.’E’))
THEN o
MODEL(K) = LINE(J:(J+1))
K = K+l .
ENDIF
CONTINUE -
MODELNUM = K-1
IF (MODELNUM.LT.1) GO TO 1100
READ (12,*)
VARNUM=0
READ (12,*,END=1300)VARNUM, R2,
+ BO, (BETA(N),N=1, VARNUM)
IF (VARNUM.NE.MODELNUM) GO TO 1000

DO 40 P=1,VARNUM :
IF (MODEL(P).EQ.’X1’) SORTED BETAS(1)=BETA(P)
IF (MODEL(P).EQ.’X2’) SORTED_BETAS(2)=BETA(P)
IF (MODEL(P).EQ.’X3‘) SORTED BETAS(3)=BETA(P)
IF (MODEL(P).EQ.’El’) SORTED BETAS (4 )=BETA(P)
IF (MODEL(P).EQ.’E2’) SORTED BETAS(5)=BETA(P)
IF (MODEL(P).EQ.’E3‘) SORTED BETAS (6)=BETA(P)

CONTINUE . -

WRITE (13,901) VARNUM, BO,
+ (SORTED_BETAS(N),N=1,6)
FORMAT (1X,I1,5X,F9.5,5X,F9.5,5X,F9.5,5X,F9.5,5X%,
+ F9.5,5X,F9.5,5X,F9.5)
TGTALLINES = TOTALLINES+1
ENDIF ‘ ,
ENDIF
GO TO 5

CONTINUE
CLOSE(12)

CLOSE(13) »

PRINT *, 'FILTERING OF MILLER3BETA.LIS IS COMPLETE.’
PRINT *, TOTALLINES,’ LINES WRITTEN TO

+ MILLER3BETA.DAT.’

PRINT *,’ ’
GO TO 1600

CONTINUE ' ,
PRINT *, ‘Unexpected file format!’,

+ * .# of variable names does not’,
+ ‘correspond to # of varibles read.’

GO TO 1600
CONTINUE
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1200

1300

1500

1501
1600

++ 4+

PRINT *, 'Unexpected file format!’, . ‘
' Could not find X1, X2, X3, El, E2, E3.°

GO TO 1600

CONTINUE
PRINT *, ‘Unexpected file format! Expecting OMNLY BO.’

GO TO 1600

CONTINUE )

PRINT *,’'Unexpected file format! Encountered EOF
while ’,

‘attempting to read VARNUM, R2, B0, and/or
Betas.’
GO TO 1600

CONTINUE

PRINT 1501, '+++ ERROR WHILE OPENING FILE +++',
' error code = ’,IERROR

FORMAT (/1X, A/ 1X, A, 18/) ‘

CONTINUE
END
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SUBROUTINE Countl (NewOut)

integer num(15),1i,3j,k,ptrmse,ptrsp

integer ptrcp,varsmse,varssp,varscp
integer check(4) ‘ '
integer n,emse,esp,ecp,DesignPoint

integer ccp,cmse,csp,cumemse,cumecp,cumesp
integer chartmse(0:3,0:3),chartcp(0:3,0:3)
integer chartsp(0:3,0:3) :

real MSE(15),Sp(15),cp(15),r2(1F)

real minmse,minsp,mincp,nummse,numcp, numsp
real mseeer,cpeer,speer

‘real msepm,cppm, sppm

character*2 m(4,15)

character*20 NewOut .

check(1l)=1

check(2)=5

check(3)=11

check(4)=15

DesignPoint=1

do7i=0,3
do 3k =20,3
chartmse (i, k)=0
chartcp(i,k)=0
chartsp(i,k)=
3 continue '
7 : continue

varsmse=0
varssp =0

~-varscp =0 R , A,,,,_,_.,_;__A._.,v,‘..,,,,ﬁ,,,,,,7,ﬂ,_,k,~»,;.,i,., e

cumemse=0
cumesp=0
cumecp=0

open (unit=11, file='temp.dat’, status=‘o0ld’,
+ iostat=IERROR, err=10060)
open (unit=12, file=NewOut, status='new’,
+ iostat=IERROR, err=1000)
open (unit=13, file=’PMl.dat’, status=’'new’,
+ . iostat=IERROR, err=1000)
write(13,*)" DESIGNPOINT MSE 'Y
+ 'SP CP’ '

Do 50 jj=1,63,2
Write(12,*)’
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905

910

915

920 |

Write(12,*)'

Write(12,*)’ *

Write(12,*) Thhxkkhkhhhhkhkrhiird DESTGN POINT ',
DesignPoint r okkkkkhkkkhhkhdkhhhkhkhhd s

Write (12,*)’ '

DesignPoint=DesignPoint + 2

do 20 k=1,60
do 10 i=1,15

emse=0

esp=0

ecp=0
read(11,’(1X,I1)’,end=40)num(i)

IF (num(i).EQ.l) THEN

'read(11,905,end=40)num(i),r2(i),cp(i),MSE(i}, Sp(l)

ym(1,1)
format(7X,11,4X%,F10.8,3X,F9.5,3X,F9.7,2X,
F10.8,2X,A2) _
ELSE
IF (num(i).EQ.2) THEN
read(11,910,end= 4G)num(1) r2(i),cp(i),MSE(i),Sp(i)
,(m(Jll) i=1,2)
format (7X,I1, 4X Fl10.8,3X,rF9.5,3X,F9.7, 2X,
F10.8,1X,2(1X,A2))
ELSE

IF (num(i).EQ.3) THEN
read(11,915,end=40)num(i),r2(i),cp(i),MSE(i),Sp(i)
r(m(j,i),3=1,3)
format (7X,11, 4X F10.8,3X,F9.5,3X,F9, 7 2X,
F10.8,1X,3(1X,A2))
ELSE

IF (num(i).EQ.4) THEN
read(11,920,end=40)num(i), r2(i),cp(i) ,MSE(i),Sp(i)
r(m(3,1),3=1,4)

format (7X,I1,4X,F10.8,3X,F9.5,3X,F9.7,2X,
F10.8,1X,4(1X,A2))

ELSE ' .

Print *, ’‘Number of variables not found;’,
‘input file in wrong format!'’

ENDIF

ENDIF

ENDIF

ENDIF

minmse=10000
minsp =10000
mincp =10000
ptrmse=0
ptrxcp =0
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ptrsp =0
do 30 j= 1,4
if (mse(check(j)).lt.minmse) then
minmse=mse(check(j)) '
ptrmse=check(j)
endif
if(sp(check(j)).lt.minsp) then
minsp=sp(check(]j))
ptrsp=check(j)
"endif
if(cp(check(3j)).lt.mincp) then
mincp=cp(check(3j))
‘ptrcp=check(j)
endif

30 continue
10 continue

40 continue

varsmse=varsmse+num(ptrmse)
varssp =varssp +num{ptrsp)
varscp =varscp +num(ptrcp)

do 70 n=1,num(ptrmse)
lf(m(n,ptrmse) EQ ‘El‘’) then
emse=emse+l
: endif
70 continue

do 80 n=1,num(ptrsp)
if(m(n,ptrsp).eq.’El’) then
esp=esp+l
endif
80 continue

do 90 n=1,num(ptrcp)
if (m(n,ptrcp).eq.’El’) then
ecp=ecp+1
endif
90 continue

cumemse=cumemse+emse

cumesp=cumesp+esp

cumecp=cumecp+ecp

cmse=num(ptrmse)-emse

ccp=num(ptrcp)-ecp

csp=num(ptrsp)-esp '
chartmse(cmse,emse)=chartmse(cmse,amse)+1
chartcp(ccp,ecp)=chartcp(ccp,ecp)+1
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++

+ +

20

-+

++

chartsp(csp,esp)=chartsp(csp,esp)+1

write(12,*) 'MSE’,num(ptrmse) mse(ptrmse)
+Sp(ptrmse),cp(ptrmse),’ *,
(m(j,ptrmse),j=1,num(ptrmse))
write(12,*) ’Sp ',num(ptrsp),mse(ptrsp)
+Sp(ptrsp), CP(ptrsP)r “y
(m(j,ptrsp),i=1,num(ptrsp))
write(12,*} ‘Cp ',num(ptrcp),mse(ptrcp)
,Sp(ptrep),cp(ptrcp),’ *,
(m(j,ptrcp),j=1,num(ptrcp))

Write(12,%) ‘hkkkdkdkbhhhhhhhhhhhhhhbdrhrhhhs
hhkhkhkdhkhhhkkk’
2 T

, :

write(12,*)
write(12,%*)
continue _
nummse = real(varsmse)/60.0
numsp = real(varssp)/60.0
numcp = real(varscp)}/60.0
mseeer= real (cumemse)/60.0

’

. W ew

cpeer = real(cumecp) /60.0
speer = real(cumesp) /60.0
msepm = l-({mseeer/nummse)
cppm = l-(cpeer/numcp)
sppm = l-(speer/numsp)

write(12,*) 'The avg number of vars using MSE’,
’ was ‘', nummse
write(12, *) ‘The avg number of extraneous vars from
MSE’,
' was’, mseeer
write(12,*) ’#***x** The PM for MSE was ', msepm,’
dededhkk !
write(12,*) *
write(12,*) ‘The avg number of vars using Sp was ’,
numsp
write(12,*) ‘The avg numtber of extraneous vars from
Sp’,
' was ',speer
write(12,*) ’'**+***+* The PM for Sp was ’, sppm,’
hkdhdd
write(12,*) *
write(12,*) ‘The avg number of vars using Cp was’,
numcp
write(12,*) 'The avg number of extraneous vars
from Cp’, '
’ was ',cpeer
wr1te(12 *) ¢**%%xx* The PM for Cp was ’, cppm,’
hhkkdddh’!
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'

T se e

write(12,*) * ¢
write(12,%*) * .
write(12,*) ’'Correct Vars (0-3, ~-wn) -VS- /,
+ 'Extraneous Vars (0-.,across)’

write(12,*) * ¢ ' ' '
write(12,*) ‘ MSE TABLE’
wr1;e(12 *)y ¢+

do 100 i=0,3

wrlte(12 *) (chartmse(l,J),J—O 3)

100 continue
- write(12,*) * ¢
- write(12,%*) * .
write(1l2,*) ‘Sp TABLE'
write(lz,*)
do 110 i=0.3
wr1te(12 *) (chartsp(i,j),3=0,3)

110 continue

write(12,*) *
write(12,*) '
write(12,*) ‘Cp TABLE’
do 120 i=0,3
write (12,*) (chartep(i,j),3j=0,3)

120 continue
write(13,*) (DésignPoint-Z),' ‘ '}msepm,' ' ’,
+ sppm, ’ ' ycppm
50 Continue
Close(11)
Close(12)
Close(13)
GO TO 1200

* Error trap: dtchhhkhkhkhkdhdhhhhdhhhdkhhkhkhhhkhhhhkhdehhdhhihh

1000 Continue
Print 1100, '+++ ERROR WHILE OPENING FILE +++',
+ error code = ’, IERROR
1100 FORMAT(/1X, A/ 1xX, A, 18/)

L2 2R 22222 X2 XX SRR R 2R 22222222 2 22 2222t d 2 a2 2 X2 2 XX XXX

1200 CONTINUE
Print #*,’Counting complete. ’, NewOut,’ written.’
END ’
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khkkhkhkhkkhkkkkkd*k* FORTRAN PROGRAM COUNT3.FOR #%kkkkkdkdkkhkidhk
222 R R s R Ry T R R R L A IR T 2 2 S 2

SUBRCUTINE COUNYJ} (NewOut)
integer num(63),%,j,k,ptrmse,ptrsp
integer ptrcp,varsmse varssp,varscp
integer check(6) -
integer n,emse esp,ecp,DeSLgnP01nt
integer ccp,cmse,csp ‘
integer chartmse(0:3,0:3),chartcp(0:3,0:3)
integer chartsp(0:3, 0 3)
real MSE(63), Sp(63) cp(63), r2(63)
real minmse,minsp,mincp,nummse, numcp,numsp
real mseeer,cpeer, speer
real msepm,cppm,sppm
character*2 m(6,63)
character*20 NewOut
check(1l)=1 '
check(2)=7
check(3)=22
check(4)=42
check(5)=57
check(6)=63
DesignPoint=2

do7i=0,3
do 3k =20,3
chartmse(i,k)=0
chartcp(i, k)=0
‘ chartsp(i,k)=0
3 continue
7 continue

varsmse=0 - I
varssp =0 :

77777 -varscp =0 : e
cumemse=0

cumesj:=0
cumecp=0
open (vnit=11, file='temp.dat’, status=‘old’,
+ ilostat=IERROR, err=1000)
open (unit=12, file=NewOut, status='new’,
+ iostat=IERROR, err=1000)
open {(unit=13, file='PM3.dat’, status=’'new’,
+ iostat=IERROR, err=1000)
write(13,*)’ . DESIGNPOINT MSE ’,
+ 'SP Cp’

Do 50 jj=2,64,2
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e

905

910

915

920

925

+

Write(12,*)’
Write(12,*)’
erte(lz *)'****************** DESIGN POINT "
Des]_gnpo_lnt ! dkkdkdhdkhkhhkhkkhhdhkdhd
Write(12,*)’ ¢
. DesignPoint=DesignPoint+2

do 20 k=1,60 e
do 10 i=1,63

emse-O

. esp=0

ecp=0 '
read(11,’(1X,I1)’,end=40)num(i)

IF (num(i).EQ.1l) THEN

read(11,905,end=40)num(i), r2(1),cp(1) MSE(i), Sp(l)

: ,m(l i)
format(7x,11,4X%,F10.8,3X,F9.5,3X,F9.7,2X,
F10.8,2X,A2) ‘
ELSE
IF (num(i).EQ.2) THEN
read(11,910,end=40)num(i),r2(i),cp(i) ,MSE(i),Sp(i)

r(m(3,1i),3=1,2)
format (7X,11, 4X F10.8,3X,¥9.5, 3X,F9 7,2X,

F10.8,1X,2(1X,A2) )
ELSE |

IF (num(i).EQ.3) THEN
read(11,915 end—40)num(1),r2(1),cp(1) MSE(i),Sp(i)

l(m(Jll)lJ =1,3)
format (7X%,11, 4X ,F10.8,3X,F9.5,3%X,F9.7,2X,
FlO.B,lX,3(1X,A2))
ELSE

IF (num(i).EQ.4) THEN
read(11,920,end=40)num(i),r2(i),cp(i),MSE(i),Sp(i)

s(m(j,i),3=1,4)
format (7X,1I1, 4X F10.8,3X,F9.5,3X,F9.7 2X,

F10.8,1X,4(1X,A2))
ELSE

IF (num(i).EQ.5) THEN
read(11,925,end=40)num(i),r2(i),cp(i),MSE(i),Sp(i)

r(m(i,1i),3=1,5)
format (7Xx,11, 4X (F10.8,3X,F9.5,3X,F9.7,2X,
F10.8,1X,5(1X,A2))
ELSE
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IF {(num(i).EQ.6) THEN

‘read(11,930,end=40)num(i),r2(i),cp(i),M3E(i}),Sp(i)

+ ((m(j,i),3=1,6)
930 format(7x,71,4X,F10.8,3X,F9.5,3X,F9.7,2X,
+ F10.8,1X,6(1X,A2))
ELSE :
Print *, ‘Number of variables not found;’,
+ *input file in wrong formatli’
ENDIF , '
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF

minmse=10000
minsp =10000
mincp =10000

ptrmse=0
ptrep =0
ptrsp =0
do 30 j= 1,6

if(mse(check(j)).lt.minmse) then

minmse=mse (check(j))
ptrmse=check(j)

endif

if(sp(check(j)!.1lt.minsp) then
minsp=sp(check(7j))
ptrsp=check(j)

endif

if(cp(check(j)).lt.mincp) then
mincp=cp(check(j))
ptrcp=check(j)

endif

7 3077 continﬁe'
10 continue
40 continue

varsmse=varsmset+num(ptrmse)
varssp =varssp +num(ptrsp)
varscp =varscp +num(ptrcp)

do 70 n=1,num(ptrmse)
if(m(n,ptrmse).EQ.’El’) then
emse=emse+1
elseif (m(n,ptrmse).eq.’E2’) then
emse=emse+1
elseif(m(n,ptrmse).eq.’E3’) then
emse=emse+1
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70

80

90

+ 4+

+4+ +4

+

write(12,v*)

W SRR R S TR RN

else
‘continue
endif

~ continue
do 80 n=1,num(ptrsp)

if(m(n,ptrsp).eq.'zl') then
esp=esp+l
elsexf(m(n,ptrsp,.ea.'EZ ) then
esp=esp+l
elseif(m(n,ptrsp).eq.’E3’) then

© esp=esgp+l

else
continue
endif

ccatinue
do 90 n=1,num(ptrcp)

if(m(n,ptrcp).eq.’E1l’) then
ecp=ecp+l
elseif (m(n,ptrcp).eq.’E2’) then

~ ecp=ecp+1
elseif(m(n,ptrcp). eq.'E3 ) then

- ecp=ecp+l
else.
continue
endif

continue
cumemse=cumemse+emse
cumesp=cumesp+esp
cumecp=cumecp+ecp
cmse=num(ptrmse)-emse
ccp=num(ptrcp)-~ecp

-.csp=num({ptrsp)-esp . . L
chartmse(cmse,emse)=chartmse(cmse,emse)+1
chartcp(ccp,ecp)=chartcp(ccp,ecp)+1
chartsp(csp,esp)=chartsp(csp,esp)+1

write(12,+*) 'MSE',num(ptrmse) mse(ptrmse)

+Sp(ptrmse),cp(ptrmse),’ ’,
(m(j,ptrmse),j=1,num(ptrmse))

write(12,*) 'Sp ',num(ptrsp),mse(ptrsp)

Sp(ptrsp),cp(ptrsp),’ ’,
(m(j.ptrsp) j-l num(ptrsp))

write(12,*) 'Cp ’,num(ptrcp),mse(ptrcp)

/Sp(ptrep),cp(ptrep),’ *,
(m(j,ptrcp),J-I,num(ptrcp))
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20

100

write(12,%*) *

write(12,*) * '

continue
nummse = real(varsmsej/60.0
numsp = real(varssp)/60.0
numcp = real(varscp)/60.0
mseeer= real(cumemse)/60.0
cpeer = real(cumecp) /60.0
speer = real(cumesp) /60.0
msepm = l-(mseeer/nummse)
cppm = 1-(cpeer/numcp)
sppm = l-(speer/numsp)

write(12,*) ‘The avg number of

+ ’ was ‘, nummse
write(12,*) ‘The avg number of

+ from MSE’,

+ . ! was ', mseeer
write(12,*)’*** The PM for MSE
write(12,*) * ¢
write(12,*) ‘The avg number of

+ numsp
write(12,*) ‘The avg number of

+from Sp’,

+ '’ was ’',speer

vars using MSE',.‘

extraneous vars

was ‘,msepm,’ *kkx’
vars using Sp was’,

extraneous vars

write(1l2,*)’***x*x*x* The PM for Sp was !, sppm,’ *k&7

write(12,*) *

write(12,*) ‘'The avg number of
+ ' numcp ‘

write(12,*) ’‘The avg number of
+ from Cp’,
+ '’ was ’,cpeer

vars using Cp was’,

extraneous vars

write(l2,*) **%*x* The PM for Cp was ’,cppm,’ *#%*’

write(12,*) *
write(12,*) ¢ -

write(12,*) ‘Correct Vars (0-3,

down) -vs- ‘,

+ ‘Extraneous Vars (0-3,across)’

write(12,*) *
write(12,*) ' MSE TABLE’
write(12,*) *

do 100 i=0,3

write(12,*) (chartmse(i,j),j=0,3)

continue

write(12,*) *
write(12,*) * »
write(12,*) ‘Sp TABLE'’
write(12,*)

do 110 i=0,3

write(12,*) (chertsp(i,j),j=0,3)
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110 , continue

' write(12,*) * *
R write(12,%*) *

write{l1l2,*) ’‘Cp TABLE’

do 120 i=0,3

, write (12 *) (chartcp(i,j),ji=0, 3)
.20 continue .
wrxte(13,*)(De31gnP01nt-2), . ',msepm,
+ ' ' ,8ppm, ’ ' rcppm

50 Continue

- Close(11)
Close(12)
Close(13)
GO TO 1200

* EXTOr trap: *hddddrddeddhdierdhdhdheh bk dhdhbhdondhhdhddhdn

e ' 1000 Continue ‘

v Print 1100, '+++ ERROR WHILE OPENING FILE +++',
e + ' error code = ’, IERROR
1100 FORMAT(/1X, A/ 1X, A, 18/)

’/' ' ,*********************************'Ic************‘v**********

e 1200 CONTINUE
Print * ’Countlng complete. ‘, NewOut,’ written.’
END

S . R
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FILCOUNT.FOk
*This program takes SAS R-Squared listings in any file and
*extracts models with the lowest MSE, Cp, and Sp and then
*figures the performance measure (PM). This program calls
*subroutines Countl.for and Count3.for and write the *calcu-

lated PM’s to *PMl.dat and PM3.dat, respectively.
L2322 SRR Rl R 2R R R R A X2 X R XXX 22X XA X2 X 2 X

Character*20 NewIn
Character*29 NewOut
Character*80 Line
CHARACTER I, J
Integer Var

Logical VarFlag

S Cont.inue . :
Print *,’Name of file to!examine? (20 char or less;’,
+ AL L o) quit)'
Read (*,’(A20)’) Newln . |
If (NewIn(l:1).EQ.’*’) GO TO 999
Print *,’Output file? (Zb char or less)’
Read (*,’(A20)’) NewOut |
7 Continue ;
Print *, ’'Number of extraneous variables? (1 or 3
+ONLY!1)’ |
Read (*, ’'(Il1)’) Var
If ((Var.NE.l).AND.(Var.NE.3)) GO TO 7

9 Continue
VarFlag = (Var.EQ.3)

Open (unit=10, file=NewIn, status='OLD’,
& iostat=IERROR, err=1000)

Open (unit=11, file='temp.dat’, status='NEW’,
& iostat=IERROR, err=1000)

10 Continue
Read(10,200,END=888) Line
I = LINE (8:8)
J = LINE (9:11)

IF (VarFlag) GO TO 777

IF ((I.EQ.’1).AND.(J.EQ.’ ‘)) THEN
WRITE (11,201) I ~
WRITE (11,200) LINE

ELSE

IF ((I.EQ.’2').AND.(J.EN.’ ‘)) THEN
WRITE (11,201) I
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WRITE (11,200) LINE
ELSE A

IF ((I.EQ.’3’).AND.(J.EQ.’ ’)) THEN
WRITE (11,201) I

WRITE (11,200) LINE

ELSE :

IF ((I.EQ.’4’).AND.(J.EQ.’ ‘)) THEN
WRITE (11,201) I
WRITE (11,200) LINE

ENDIF S

ENDIF
ENDIF
ENDIF
GO TO 10

777 Continue : ‘
IF ((I.EQ.’1’).AND.(J.EQ.’ ')} THEN
WRITE (11,201) I
WRITE (11,200) LINE
ELSE

IF ((I.EQ.’2').AND.(J.EQ.’ ’)) THEN
WRITE (11,201) I
WRITE (11,200) LINE

ELSE

IF ((I.EQ.’3’).BND.(J.EQ.’ ’)) THEN
WRITE (11,201) I
WRITE (11,200) LINE

IF ((I.EQ.’4').AND.(J.EQ.’ ')) THEN
WRITE (11,201) I
WRITE (11,200) LINE

ELSE

IF ((I.EQ.’5’).AND.(J.EQ.’ ‘)) THEN
WRITE (11,201) I
WRITE (11,200) LINE

ELSE

IF ((I.EQ.’6').AND.(J.EQ.’ ')) THEN
WRITE (11,201) I

WRITE (11,200) LINE
ENDIF
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‘ENDIF
ENDIF
ENDIF
ENDIF
ENDIF

GO TO 10

200 Format (A80)

201 Format (1X,Al)

888 Continue

: Close(10)
Close(1l)

Print *,’Filtering complete on ’,NewlIn,’. Counting
+bequn.’

IF (VarFlag) THEN
Call Ccunt3(New0ut)
Print *,’Counting complete. PM"s calculated for’,

+ ’ deSLgnp01nts with 3 extraneous varlables'
+ * and written to PM3.dat.’

Print *,’
ELSE

Call Countl (NewOut)
Print *,’Counting complete. PM"s calculated for’,

+ * designpoints with 1 extraneous variable’,
+ ’ and written to PMl.dat.’
Print »,’ '
ENDIF
GO TO 5

999 Continue

Print *,’Processing complete. Program terminated.’
Stop

* Error trap: L334 AR 22 SRS R XX R X2 2 L)

1000 Continue
Print 1100, ‘+++ ERROR WHILE OPENING FILE +4+’,

& ’ error code = ', IERROR

1100 FORMAT(/1X, A/ 1X, A, 18/)
GO TO 5

Je g de e ode e de de de e o de ke de e de de v e de de e de de Je g gk ok de de ok e e vk e v do v d ok e e Ve e ok de e e o e e ok e ok o
END

130




*************1***************i******************************

FILSTEPCOUNT.FOR
*This progzam takes SAS Forward Selection Stepwise llstlngs
*in any file and extracts models according to Miller’s
*Method and then figures the performance measure (PM). The
*program reads 1 extraneous variable data files from
*Stepl Input.dat and 3 extranceous variables data files from
*Step3 Input dat, forms a temporary file called TEMP.DAT and

#then calls subroutlnes StepCountl.for and StepCount3.for to

*analysis the data.
************************************************************

Character*14 NewIn
Character*20 NewOut
Character*80 Line
Character*l 7, J
Character*2 K

Integer Var

Logical VarFlag, BatchFlag

5 Continue ,
Print *,’Interactive(I) or Batch(B) mode? (I or B
+only):” ‘
Read (*,’(Al)’)Mode
IF ((Mode.NE.’I’).AND.(Mode.NE.’B’)) Go to 5
BatchFlag=(Mode.EQ.'B’)
IF (BatchFlag) Go to 6
Print *,’Name of file to examine? (20 char or less;’,
+ * "*" to quit)’ v
Read (*,’(A20)’) NewlIn
If (NewIn(l:1).EQ.’*’) GO TO 999
6 Continua
Print * 'Output file? (20 char or less)'
Read (*,’(A20)’') NewOut
7 - Continue -

Print *,’Number of extraneous variables? (lor 3 .

+ONLY11)’
Read (*, ‘(Il)’) Var
If ((Var.NE.1).AND.(Var.NE.3)) GO TO 7

9 Continue
VarFlag = (Var.EQ.3)

IF ((varFlag).AND.(BatchFlag)) THEN
Open (unit=9, file='Step3 Input.dat’, status=’'OLD’,
+ iostat=IERROR, err=1000)

ELSE
IF ((.NOT.VarFlaq).AND.(BatchFlag)) THEN
' Open (unit=9, file=’Stepl Input.dat’,
+ status='OLD’,
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11

10

+ iostat=IFRROR, err=1000)

ENDIF
ENDIF
Continue '
IF (EutchFlag) Read(9,’(Al4)’,END=666) NewIn
Print *,’Filtering begun on ‘,Newln,’.Filtered data ’,
+ ‘is being dumped to TEMP.DAT.’

Open (unit=10, £file=NewIn, status=’'OLD’,
iostat=IERROR, err=1000)

Open (unit=1], file='temp.dat’, status='NEW’,
& iostat=IERRCR, err=1000)

Continue
Read(10,200,END=3888) Line
I = LINE (5:5)

J = LINE (6:8)

K = LINE (4:5)

IF (VarFlag) GO TO 777

IF ((I.EQ.’1’).AND.(J.EQ.’ ‘)) THEN
WRITE (11,200) LINE
ELSE

IF ((I.EQ.’2’).AND.(J.EQ.’ ')) THEN
WRITE (11,200) LINE
ELSE

IF ((I.EQ.’3’).AND.(J.EQ.’ ')) THEN
WRITE (11,200) LINE
ELSE

IF ((I.EQ.’4°).A¥D.(J.EQ.’ ')) THEN
WRITE (11,200} LINE
ELSE

IF ((I.EQ.’5’).AND.(J.EQ.’ ‘)) THEN
WRITE (11,200) LINE
ELSE

IF ((I.EQ.’6').AND.(J.EQ.’ ‘)) THEN
WRITE (11,200) LINE
ELSE

IF ((I.EQ.’7').AND.(J.EQ.’ ‘)) THEN
WRITE (11,200) LINE
ELSE

IF ((I.EQ.’8’).AND.(J.EQ.’ ')) THEN
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WRITE (11,200) LINE
ENDIF

ENDIF
ENDIF
/ N - ENDIF
o - ENDIF

ENDIF

| ENDIF ' | o o g
e ~ ENDIF |
s | GO TO 10

777 Continue

IF ((I.EQ.’1’).AND.(J.EQ.’ ‘)) THEN
WRITE (11,200) LINE

ELSE

L | IF ((I.EQ.’2’).AND.(J.EQ.’ ’)) THEN
o WRITE (11,200) LINE
- | ELSE

i IF ((I.EQ.’3').AND.(J.EQ.’ ‘)) THEN
1) : WRITE (11,200) LINE
i | ELSE |

a IF ((I.EQ.’4’).AND.(J.EQ.’ ')) THEN
\ .~ WRITE (11,200) LINE
2 ELSE

IF ((I.EQ.’'S5’).AND.(J.EQ.’ ')) THEN
WRITE (11,200) LINE
ELSE : -

N IF ((I.EQ.’6').AND.(J.EQ.’ ')} THEN
WRITE (11,200) LINE ‘
" ELSE |

IF ((I.EQ.’7’).AND.(J.EQ.’ ’)) THEN | }
i A WRITE (11,200) LINE
ol ELSE

— IF ((I.EQ.’8’).AND.(J.EQ.’ ’)) THEN
WRITE (11,200) LIRE
- ~ ELSE .
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200
666

888

IF ((I.EQ.‘9').AND.(J.EQ.’ ‘)) THEN
WRITE (11,200) LINE
ELSE
IF ((K.EQ.’10’).AND.(J.EQ.’ ‘)) THEN
~ WRITE (11,200) LINE
ELSE
IF ((K.EQ.’11’).AND.(J.EQ.’ ‘}) THEN
WRITE (11,200) LINE
ELSE
IF ((K.EQ.’12').AND.(J.EQ.’ ')) THEN
WRITE (11,200) LINE .
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF

GO TO 10

Format (A80)

Continue
BatchFlag=.FALSE.

Continue

IF (BatchFlag) THEN
Close(10)
Go to 11

ELSE
Close(9)
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Close(10)

Close(11)
ENDIF
Print *,’Filtering complete. Arnalysis of data in’,
+ © ' TEMP.DAT has begqun.’,’ Anaiysis results
+will-’, :
+ ' be dumped to ’,Newout,’.’

IF (VarFlag) THEN

Call Stepcount3(NewOut)
ELSE

Call Stepcountl(NewOut)
ENDIF o :
GO TO 5

999 Continue

Print *,’Processing complete. Program terminated.’
"Stop : ‘ . , '

* Error trap: (A XERX RIS LIS IR 22222222222 22 2 X 2
1000 Continue - :
~ Print 1100, °+++ ERROR WHILE OPENING FILE +++’,
& ' error code = ', IERROR
1100 FORMAT(/1X, A/ 1X, A, 18/)
GO TO 5
(22222222 22222222 2222 X222 a2 X2 222222 X322 2R a2 2 R L

END
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khkkkhhkkkktxrkr® FORTRAN PROGRAM MILIBETA.FOR %*%kskdkdkdkkhtd
T L T I T 2 2

Logical ErrFlag
CALL BETAl
CALL BETA3

ErrFlag = .FALSE.

Call MILILTMI (ErrFlag)

If (ErrFlag) Go to 999

Print *,’TMSEP’’s calculated for designpoints with’,
+ * 1 extraneous variables and written to
+ MILLTM1.DAT."

Print *,’ '

Call MILLTM3(ErrFlagq)

If (ErrFlag) Go to 999

Print *,’TMSEP’’s calculated for desxgnpOLnts w1th'
+ ' 3 extraneous variables and written to
+ MILLTM3.DAT.’

Print *,’ '

999 Continue
Print *,’Processing complete. Program terminated.’

STOP
END
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**************************************;k*********************

khkkkkkkkkkkkwd FORTRAN PROGRAM MILLSAS.FOR #hdkddddddkkhkhkhds
T T Y s L Y I T Il T Ty )

INTEGER VarInModel, DP, REP, ActualREP

CHARACTER*3 J :
CHARACTER*6 filename
CHARACTER*11 Modellex
CHAKACTER*17 Model3ey .
CHARACTER*80 LINE

OPEN (unit=10, file= ’MlllerlBeta,sas', status='NEW'

+ iostat=1ERROR, err=1409)

OPEN (un1t=1¢, file=’Miller3Beta.sas’, status='NEW'
+ iostat=IERROR, err=1400)

OPEN (unit=12, file=’Stepl all.dat’, status=’0OLD’,

+ iostat=IERNOR, err=1300) -

OPEN (unit=13, file='Step3_all.dat’, status=’OLD’,

+ 1ostat=1ERROR, err=1400)

Do 60 DP=1,64

VarInModel = 0
ActualREP = 0

filename = ’ ’
Modellex = * 4
Model3ex = ' ’

IF (DP.EQ.1) THEN
filename = ‘0Ol.dat’

~ GO TO 10

ENDIF

W

IF (DP.EQ.2) THEN
filename = ’02.dat’
GO TO 20

ENDIF

IF (DP.EQ.3) THEN
filename = ‘03.dat’
GO TO 10

ENDIF

IF (DP.EQ.4) THEN
filename = ’04.dat’
GO TO 20

ENDIF
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IF (DP.EQ.5) THEN

- filename = ‘05.dat’
GO TO 10

ENDIF

IF (DP.EQ.6) THEN
filename = ’06.dat’
GO TO 20 '

ENDIF

IF (DP.EQ.7) THEN
.filename = ‘07.dat’
GO TO 10

‘ENDIF

IF (DP.EQ.8) THEN
filename = ’‘08.dat’
GO TO 20

ENDIF

IF (DP.EQ.9) THEN
filename = ‘09.dat’
G0 TO 10

ENDIF

IF (DP.EG.10) THEN

filename = ’10.dat’ .

GO TO 20
ENDIF

IF (DP.EQ.11) THEN
filename = ‘l1l.dat’
GO T0O 10

ENDIF

IF (DP.EQ.12) THZN
filename = ‘12.dat’
GO TO 20

ENDIF

IF (DP.EQ.13) THEN
filename = ’13.dat’
GO TO 10

ENDIF

IF (DP.EQ.14) THEN
filename = ’‘l1l4.dat’
GO TO 20

ENDIF

IF (DP.EQ.15) THEN
filename = ’'15.dat’
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GO TO 10
ENDIF

IF (DP.EQ.16) THEN
filename = ’l6.dat’
GO TO 20

ENDIF

IF (DP.EQ.17) THEN
filename = ’17.dat’
GO TO 10

ENDIF

IF (DP.EQ.18) THEN
filename = ‘18.dat’
GO TO 20

ENDIF

IF (DP.EQ.19) THEN
"filename = ’19.cat’
GO TO 10 ‘ '

ENDIF

IF (DP.EQ.20) THEN

- filename = '20.dat’
GO’ TO 20 - o

ENDIF '

IF (DP.EQ.21) THEN
filename = ’21.dat’
GO TO 10

ENDIF

- IF (DP.EQ.22) THEN

filename = ’22.dat’ .

GO TO 20 ‘
ENDIF

IF (DP.FQ.23) THEN
filename = ’23.dat’
GO TO 10

ENDIF

IF (DP.EQ.24) THEN
filename = r24.dat’
GO TO 20

ENDIF

IF (DP.EQ.25) THEN
filename = ’25.dat’
GO TO 10

ENDIF
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IF (DP.EQ.26) THEN
filename = ’26.dat’
GO TO 20

ENDIF

IF (DP.EQ.27) THEN
filename = ’27.dat’

GO TO 10

ENDIF

IF (DP.EQ.28) THEN
filename = ’'28.dat’
GO TO 20

ENDIF

IF (DP.EQ.29) THEN
filename = ’29.dat’
GO TO 10

ENDIF

IF (DP.EQ.30) THEN
filename = ’30.dat’
GO TO 20

ENDIF

IF (DP.EQ.31) THEN
filename = ’'31l.dat’
GO TO 10

ENDIF

IF (DP.EQ.32) THEN
filename = ’32.dat’
GO T0 20

ENDIF

IF (DP.EQ.33) THEN
filename = ’33.dat’
GC TO 10

ENDIF

IF (DP.EQ.34) THEN
filename = ’34.dat’
GO TO 20

ENDIF

IF (DP.EQ.35) THEN
filename = ’35.dat’
GO TO 10

ENDIF

IF (DP.EQ.36) THEN
filename = ’36.dat’
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GO TO 20
ENDIF

IF (DP.EQ.37) THEN
filename = ’37.dat’
GO TO 10

ENDIF

IF (DP.EQ.38) THEN
filename = ‘38.dat’
GO TO 20

ENDIF

IF (DP.EQ.39) THEN
filename = ’‘39.dat’
GO TO 10

ENDIF

IF (DP.EQ.40) THEN

filename = ‘40.dat’

GO TO 20 .
ENDIF

IF (DP.EQ.41) THEN
filename = ’4l.dat’
GO TO 10

ENDIF o

IF (CP.EQ.42) THEN
filename = ’42.dat’

GO TO 20
ENDIF

IF (DP.EQ.43) THEN

filename = ’43.dat’ '

GO TO 10
ENDIF :

IF (DP.EQ.44) THEN
filename = ’'44.dat’
GO TO 20

ENDIF

IF (DP.EQ.45) THEN
filename = ’45.dat’
GO TO 10

ENDIF

IF (DP.EQ.46) THEN
filename = ’46.dat’
GO TO 20

ENDIF
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IF (DP.EQ.47) ‘THEN
filename = ’47.dat’
GO TO 10

ENDIF

IF (DP.EQ.48) THEN
filename = ’48.dat’
GO TO 20

ENDIF

IF (DP.EQ.49) THEN
filename = ’49.dat’
GO TO 10

ENDIF

IF (DP.EQ.50) TEEN
filename = ’50.dat’
GO TO 20 '

ENDIF

IF (DP.EQ.51) THEN
filename = ’£l.dat’
GO TO 10

ENDIF

IF (DP.EQ.52) THEN
filename = ’'52.dat’
GO TO 20

ENDIF '

IF (DP.EQ.53) THEN
filename = ’S53.dat’
GO TO 10

ENDIF

IF (DP.EQ.54) THEN
filename = ’'54.dat’

. GO TO 20

ENDIF

IF (DP.EQ.55) THEN
filename = *55.dat’
GO TO 10

ENDIF

IF (DP.EQ.56) THEN
filename = ’56.dat’
GO TO 20

ENDIF

IF (DP.EQ.57) THEN
filename = ’57.dat’
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925

900

GO TO 10
ENDIF

IF (DP.EQ.58) THEN
filename = ’58.dat’

. GO TO 20

ENDIF

IF (DP.EQ.59) THEN
filename = ’59.dat’
GO T™ 10

ENDIF

IF (DP.EQ.60) THEN
filename = ’60.dat’
GO TO 20

ENDIF

IF (DP.EQ.61) THEN
filename = ’6l.dat’
GO TO 10

ENDIF

'IF (DP.EQ.62) THEN

filename = ’'62.dat’
GO TO 20
ENDIF

IF (DP.EQ.63) THEN
filename = ’‘63.dat’
GO TO 10 '

ENDIF

IF (DP.EQ.64) THEN
filename = ’‘64.dat’ :

. .GO TO 20 e L N

ENDIF e o

CONTINUE
CONTINUE

READ (12,925,END=1350) LIUE
FORMAT(1X,A80)

J = LINE(1:3)

IF (J.NE.’Rep’) GO TO 924

DO 30 REP=1,60

READ (12,900,END=1000) ActualREP, Varlntiodel, Modellex
FORMAT(5X,I2,12X,11,6X,All1)

IF (REP.NE.ActualREP) GD TC 1100
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904

905

906

907

908

909

910

30

20
926
927

WRITE (10,901) FILENAME
FORMAT (1X, 'FILENAME NEW ’‘‘,A6,''’;')

WRITE (10,902)

FORMAT (1X,’'DATA NEW;')

WRITE {10,903)
¥FORMAT (1X,'INFILE NEW;')

WRITE (10,904)

FORMAT (1X,’INPUT SETNUM Y X1 X2 X3 X4 E1;’)

WRITE (10,905) ActualRzP
FORMAT (1X,’'IF SETNUM"=‘,I12,’ THEN DELETE; ')
IF (VarInModel.EQ.0) THEN

WRITE (10,906)
FORMAT (1X,'INTERCEP = 1;’)

WRITE (10,907)
FORMAT (1X,'PROC RSQUARE DATA=NEW NOINT B;')

WRITE (10,908)
FORMAT (1X,’MODEL Y = INTERCEP;’)

ELSE

WRITE (10,909)
FORMAT (1X,'PROC RSQUARE DATA=NEW B;’)

WRITE (10,910) Modellex, VarInModel
FORMAT (1X,’'MODEL Y = ’,All,’ /INCLUDE=’,Il1,’;‘)

ENDIF
WRITE (10,*)
CONTINUE

GO TO 50

CONTINUE

CONTINUE

READ (13,927,END=1375} LINE
FORMAT (1X,A30)

J = LINE(1:3)
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912

913

914

915

916

917

918

919

920

9821

40
50

IF (J.NE.’Rep’) GO TO 926
DO 40 REP=1,60

READ (13,911,END=1200) ActualREP, VarInModel . Model3ex
FORMAT(5X,I2,12X,11,6X,A17)

IF (REP.NE.ActualREP) GO TO 1300

WRITE (11,912) FILENAME
FORMAT (lx' lFILEl‘AME NEW rr e AG’III.')

WRITE (11,913)
FORMAT (1X,’DATA NEW;'’)

WRITE (11,914)
FORMAT (1X, 'INFILE NEW;')

WRITE (11,915)
FORMAT (1X,’'INPUT SETNUM Y X1 X2 X3 X4 El1 E2 E3;’)

WRITE (11,916) ActualREP
FORMAT (1X,‘IF SETNUM"=’,I2,’ THEN DELETE;’)

S
'\5: .

IF (VarInModel.EQ.0) THEN

WRIT:: (11,917)
FORMAT (1X,'INTERCEP = 1;’)

WRITE (11,918)
FORMAT (1X,’PROC RSQUARE DATA=NEW NOINT B;')

WRITE (11,919)
FORMAT (1X, 'MODEL Y = INTERCEP;')

ELSE

WRITE (11,920)
FORMAT (1X,’PROC RSQUARE DATA=NEW B;’)

WRITE (11,921) Model3ex, VarInModel
FORMAT (1X¥,’'MODEL Y = ‘,Al7,’ /INCLUDE=’,Il,’;’)

ENDIF
WRITE (11,*)
CONTINUE

CONTINUE -
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60 CONTINUE

CLOSE (10)
CLOSE (11)
' CLOSE (12)
CLOSE (13)
PRINT *, ‘Program ccmpleted successfully with ’,
+ DP-1,’ designpoints and ‘,REP-1,
+ - ‘replications.’

GO TO 1500

# ERROR TRAP**kkkkhkhhhhkhhhhhkhhkhhhhhhhthhhhnwhhehhrrhhhkkrrs

B 1000 CONTINUE

PRINT *,’'ERROR WHILE READING STEP1_ALL.DAT.’,
+ ‘UNEXPECTED END OF FILE.' :
GO TO 1500

1100 CONTINUE
PRINT *,’STEI1l ALL.DAT IN UNEXPECTED FORMAT.',
+ 'REP COUNTER DOES NOT AGREE WITH FILE.'
GO TO 1500
1200 CONTINUE

PRINT *,'ERROR WHILE READING STEP3_ALL.DAT.’,
+ 'UNEXPECTED END OF FILE.'
GO TO 1500

1300 CONTINUE

PRINT *,’STEP3 ALL.DAT IN UNEXPECTED FORMAT.',
+ ‘REP COUNTER DOES NOT AGREE WITH FILE."
GO TO 1500

‘1350  CONTINUE

PRINT *, ‘STEP]_ALL.DAT IN UNEXPECTED FORMAT.',
+ 'DP CCUNTER DOES NOT AGREE WITH FILE.’

1375 CONTINUE

PRINT *,’'STEP3_ALL.DAT IN UNEXPECYED FORMAT.',
+ 'DP COUNTER DOES NOT AGREE WITH FILE.’

1400 CONTINUE
PRINT 1401, ’'+++ ERROR WHILE OPENING FILE +++/,
’ error code = ’, IERROR
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Vo

1401  FORMAT (/1X, A/ 1X, A, I8/)

dedddhkhhkhhhhkhhhrhhhhhhrhhhhhhhdbhhhhhhhhhhhhrhrhhrhbrhrhhrd

1500 CONTINUE
STOP
END
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FORTRAN PROGRAM MILLTM1.FOR ‘

This progr~m is designed to take the 64 groups of 60
models selected 7ia Miller‘’s method and the corresponding
3840 data sets and find the "real" MSEP for each of the 32

odd designpoints of 64 design points.
(22222 22X R 2R X2 R RS AR X2 R R R X 2 X R X 2 a2 X2 22X 22 2 X8 2 X 2 a2 22 2 2 2 R 2 2 X2 R

* % % % % %

Subroutine MIILTMI1(ErrFlag)

Integer h,i,j,k,p,r;s
Integer num

Real b0, betas(4)

Real x(4,20),x3ex1(4,20),ex,y
Real ypredm‘llers

Real ymsepmillers

Real yssepmillers

Real sumyssepmillers

Real sumdifmiilers

Real dpymsepmillers

Character*6 Infile

Logical ErrFlag ’ -
Open(unit=11,file= ’‘MILLER1BETA.DAT’,status=’old’,

o+ iostat=IERROR, err=1000)
Open (unit=13,file='MILLTM1.DAT’,status='new’,
+ iostat=IERROR, err=1002)

» Write (13,902)
902 Format (1X,’'TMSEPs calculated for the Miller’’s
+ method:’) ‘

Write (13,901)
.- 901  Format (1X,’DP’,9X,’'Miller’’s’)

Do 5 r=1,63,2

If (r.EQ.1) then
Infile=’01l.dat’
Else
If (r.EQ.3) then
Infile=’03.dat’
Else
If (r.EQ.5) then
Infile=’05.dat’
Else
If (r.EQ.7) tken
Infile=’07.dat’
Else
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If (r.rQ.9) then
Infile='09.dat’
Else
If (r.EQ.11) then
Infile=’11l.dat"’
Else
If (r.EQ.13) then
Infile='13.dat’
Else
If (r.EQ..15) then
Infile=’15.dat’
Else
If (r.EQ.17) then
Infile=’17.dat"’
_Else ,
If (r.EQ.19) then
"Infile=’19.dat’
Else ‘
If (r.EQ.21) thern
Infile='21.dat’
Else '
If (r.EQ.23) then
Infile=’23.dat’
Else :
If (r.EQ.25) then
Infile='25.dat’
Else
If (r.EQ.27) then
Infile=’27.dat’
Else
If (r.EQ.29) then
" Infile='29.dat’
Else
If (r.EQ.31) then
Infile=’31l.dat’
Else
If (r.EQ.33) then
Infile=’33.dat’
Else
If (r.EQ.35) then
Infile=’'35.dat’
Else
If (r.EQ.37) then
Infile=’37.dat’
Else
If (r.EQ.39) then
Infile=’39.dat’
Else
If (r.EQ.41; then
Infile=’41.dat’
Else
If (r.EQ.43) then
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Infile='43.dat’
Else
If (r.EQ.45) then
Infile='45.dat"
Else
If (r.EQ.47) then
Infile='47. dat'
Else
If (r.EQ. 49) then
Infile='49. dat'
Else
If (r.EQ. 51) then
Infile=’51. dat'
Else
If (r.EQ.53) then
Infile='53. dat'
Else
If (r.EQ.55) then
Infl‘e—'SS dat’
Else
If (r.EQ.57) then
Infile=*57.cat’
Else .
If (r.EQ.59) then
Infile=’59.dat’
Else
If (r.EQ.61) then
Infile=’6l.dat’
Else "
If (r.€Q.63) then
Inf11=-'63 dat-’
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
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60

70

Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
E. ﬂlf

Endif '
Open(unit=12,file=Infile, status='old',iostat-IERROR,

err=1001)

sumyssepmillers = 0
sumdifmillers = 0

Do 20 k=1,60
yssepmilliers=0

Read (11,*,end=1003) num, bO, betas(l),
betas(2), betas(3), betas(4)

‘I£(((r.GE.17).AND.(r.LE.32)).OR. (r GE.49)) then
-8 = 20
Else
s = 10
Endif

Do 50 h= 1,8

Read (12, *,end=1004)set,y,x(1 h),x(2,h),x(3,h),
x(4,h),ex

ypredmillers= b0
‘yactual = 0 '
x32x1(1,h)= x(1,h;
x3ex1(2,h)= x(2,h)
x3ex1(3,h)= x(3,h)
x3exl(4,h)= ex

Do 60 p=1,4
ractual = yactnal+x(p,h)
Continue

Do 70 p=1,4
ypredmillers = ypredmillers + betas(p)*x3exl(p,h)
' Continue

yssepmillers = ((ypredmillers-yactual)**real(2))

151




50

20

900

+ + yssepmilliers
Continue

sumyssepmillers = sumyssepmillers + yssepmillers
sumdifmillers = sumdifmillers + (s-num)

Continue
dpymsepmillers = sumyssepmillers / sumdifmillers

Write(13,900;, r, dpymsepmillers
Format (1X,12,5X,F10.6) .

Close (12)
Continue
Close (11)

Close (13)
Go to 1300

KAk ek EXTOr traprrkdddhrhhins kkkhdhihkdhhdhthrhehhhhhhdthehds

1000
1001
1002
1003

1004

1100

1200

Print *,’Something’‘’s wrong with MILLER1BETA.DAT.’
Go to 1100

Print *,’Something’’s wrong with ’,Infile

Go to 1100

Print *,’Can’‘t seem to create MILLTM1.DAT.’

Go to 1100

Print *, 'MILLERIBETA.DAT i unexpected forinat.’
ErrFlag = .TRUE. ‘ -

Go to 1300

Print *, ‘File ’,Infile,’ is in an unexpected format.’
ErrFlag = .TRUE.

Go to 1300

Continue

Print 1200, ’+++ ERROR WHILE OPENING FILE +4++,
+ ’ erroxr code = ’,IERROR

Format (/1X, A/ 1X, A, I8/)
ErrFlag = .TRUE.

Fededdededededdhhdhhhhhdehdihdddhhdhhhddddhdhhhbhdbhhdhdhhdhhdhdhdd

1300

Continue

END




1 2323 RXIR B2 222222 2222228 2022222222223 X2ARZ 2R ]

FORTRAN PROGRAM MILLTM3.FOR

* % »

This program is designed to take the 64 groups of 60
models selected via Miller’s methed and the corresponding
3840 data sets and find the "real" MSEP for each of the 32

* even decgign pointe of 64 design points.
EX 2222 AR AR Rl Nl X R 22222 3 22 X222 22X X2 2z X

. 8.

Subroutine MILLTM3(ErrFlag)

Integer n,i.j,k,p,r,s
Integer num

Real b0, betas(6)

Real x’4 20) ,x3ex3(6, 20),y,ex1 ex2,ex3
Real ypredmlllers

Real ymsepmillers

Real yssepmillers

Real sumyssepmillers

Real sumdifmillers

Real dpymsepmillers

Character*6 Infile
Logical ErrFlag

Open(unit=11,file= ‘MILLER3BETA.DAT’,status='old’,
iostat=IERRCR,err=1000)
+ Open(unit=13, flleB'MIuLTM3 DAT',statu9='new'
+ 1ostat=1ERR0R, err-1002)

. | ‘write (13,902) ,
902 .. _Format (1X,'TMSEPs calculated for Miller’’s method:’)

.~ write (13,901)
901 Format (1X,’'DP’,9X,'Miller’’s’)

Do 5 r=2,64,2

If (r.EQ.2) then
Infile=’02.dat’
Else
If (r.EQ.4) then
Infile='04.dat’
Else
If (r.EQ.6) then
Infile=’06.dat’
Else
If (r.EQ.8) then
Infile='08.da%’
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Else
If (r.EQ.10) then
Infile='10.dat’
Else
If (r.EQ.12) then
Infile='12.dat"’
Else
If (r.EQ.14) then
Infile=’14.dat’
Else
If (r.EQ.16) then
Infile=’16.datL’
Else ,
If (r.EQ.13) then
Infile=’18.dat’
§ ‘ - Else
If {(r.EQ.20) then
Infile=’'20.dat’
Else[
If (r.EQ.22) then
Infile='22.dat’
Elre
; I1f (r.EQ.24) then
1 Infile='24.dat’
Else
If (r.EQ.26) then
Infile=’26.dat’
Else
If (r.£2Q.28) then
hnfi1e=’28.dat’
Else
If (r.EQ.30) then
Infile=’30.dat’
Else
" If (r.EQ.32) then
Infile=’32.dat’
Else
If (r.EQ.34) then
Infile=’'34.dat’
Elee
If (r.EQ.36) then
Infile=’36.dat’
Else
I1f (r.EQ.38) then
Infile=’38.dat’
Else
If (r.EQ.40) then
Infile=’40.dat’
Else
If (r.EQ.42) then
Infile='42.dat’
Else

154

°




If (r.EQ.44) then
Infile=’44.dat’
Else
If (r.EQ.46) then
Infile=’46.dat’
Else
If (r.EQ.48) then
Infile='48.dat’
Else
If (r.EQ.50) then
Infile='50.dat’
Else
If (r.EQ.52) then
Infile=’52.dat:
Else '
If (r.EQ.54) then
Tnfile='54.dat’
-Else
If (r.EQ.56) then
Infile='56.dat’
Else
If (r.EQ.58) then
Infile=’58.dat’
Else
If (r.EQ.60) then
Infile='60.dat’
Eise _
If (r.EQ.62) then .
Infile=’'62.dat’
Else
If (r.EQ.64) then
Infile=’64.dat’
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
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Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif .
Open(unit=12,file=Infile,status="0ld’,iostat=IERROR,

. err=1001) :
sumyssepmillers = 0
sumdifmillers = 0
Do 20 k=1,60

yssepmillers=0

Read (11,*,end=1003)num,b0,betas(l),betas(2),betas(3),

betas(4), betas(5), betas(6!

If(((r.GE.17).AND.{r.LE.32)).OR.{r.GE.49)) then
s = 20

Else
s = 10

Endif

Do 50 L= 1,s

Read(12,*,end=1004)s=t,y,x(1,h),x(2,h),
x(3,h),x{(4.,h),exl,ex2,ex3

ypredmillers = b0
yactual = 0

x3ex3(1,h)=

x(1i,h)

= x(2,h)

x(3,h)

x3ex3(4.h)= exl
x3ex3(5,h)= ex2
x3ex3(6,h)= ex3

Do 60 p=1,4

yactual = yactual+x(p,h)
Continue

Do 70 p-=1,6
ypredmillers = ypredmillers + betas(p)*x3ex3(p,h)
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50

20

900

n

Continue

yssepmillers = ((jpredmlllers-yactual)**real(2))
+ yssepmillers

Continue

sumycsepmillers = sumyssepmillere + yesepmillers
- sumdifmillers = sumdifmillers + (s-num)

Continue
dpymsepmillers = sumyssepmillers / sumdifmillers

- Write(13,900) r, dpymsepmillers
Format (1X,12,5X,Fl10.6)

Close (12)
Continue
Close (11)

Close (13)
Go to 1300

AR EXFELYOr traprddhddnddhdhhhdhokehhhrihhhhhrrbrrthhdsihs

1600
1001
1002
1003

1004

1100

1200

-+

Print *,’Something’’s wrong with MILLER3BETA. DAT.
Go to 1100

Print *,’Something’’s wrong with ',Inflle

Go to 1100

Print *,’Can’’t seem to create MILLTM3.DAT.’

Go to 1100 :

Print *, ’MILLER3BETA.DAT in unexpected format.’
ErrxFlag = .TRUE.

Go to 1300 - e : -
Print *, 'File ',Inflle,' is in an unexpectad format.
ErrFlag = ,TRUE.
Go to 1300

Continue

Print 1200, '+++ ERROR WHILE OPENING FILE +++',
- error code = ‘,TERROR

Format (/1X, A/ 1X, A, 18/)

ErrFlag = .TRUE.

LEAZ 2 AR AR RSS2 R X R i X222 22X XSS R X2

1300

Continue

END
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*kkkkkkkk***%%* FORTRAN PROGRAM STEPCOUNT1.FOR #xktthsstkkssn
L L  E E R AR A XX 2222 XXX XXX RS X R AR RS2 a2t dtis sl s 22 X

SUBROUTINE Stepcountl (NewOut)

lnteger num, numvar, h,i,j,k,n,p,q,r,s,t,v,w,x,y,2
‘lnteger emiller, varsmlller, cumemlller, cmlller
integer chartmiller(0:3,0:3), ReadCount

real avgvars, avgevars, millerpm

character*l numchar

character*2 m(9), Model var, Good_ model(5)
character*20 NewOut

logical ModellotFound, EndofFile

num=0

emiller=0
varsmiller=0
cumemiller=0
cmiller=0
ReadCcount=0
ModelNotFound—.TRUF.
EndofFile=.FALSE

do 10 i=1,8
m{i)="
10 continve

do 2C j=1.4
Good modeli j'=' ’
20 continue

do 30 k=0,3
do 40 h=0,3
chartmiller(k,h}=0
40 continue
30 continue

open (unit=11, file=’'temp.dat’, status=‘old’,

+ iostat=IERKROR, err=1000)

open (unit=12, file=NewOut, status='new’,
+ iostat=IERROR, err=1000)

open (unit=13, file='PMstepl.dat’, status='new’,
+ iostat=IERROR, err=1000)

write(13,*)’ DESIGNPOINT MILLER’\S PM’

ReadCount=ReadCount+1
Read(11,900,end=90)numchar, Mcdel var
900 Format (4X, Al, 4X ,A2)
IF (numchar.EQ.'l') THEN

158




num=1

ELSE
-IF (numchar.EQ.’2’) THEN
num=2
ELSE
IF (numchar.EQ.’3’) THEN
num=3
ELSE
IF (numchar.EQ.’4’) THEN
. ‘num=4
ELSE
IF (numchar.EQ. ’5) TREN
num=5
ELSE
IF (numchar.EQ.’6’) THEN
num=6 .
ELSE
IF (numchar.EQ.’7’) TREN
num=7
ELSE
IF (numchar.EQ.’8’) THEN
num=8
ELSE
o Priut *, ‘Unexpected format in TEMP.DAT: ',
+ ‘ ‘Numbers 1,2,3, etc., not found!’
Go to 1300 :
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF

IF (num.NE.1l) TdEN
Print *,’'Processing terminated. Input file ',
+ ’in unexpected format' 1st number must be 1.
Go to 1300
ELSE
m!num)=Model var
ENDIF -

Do €0 n=1,63,2
Write(12,*)* '
Write(1l2,*)’ *
Write(12,*)’ '
Write(12,%) ‘**wkwwkwnknrkkskrs** DESIGN POINT ',
+ N,’ *hkkkkkekhhrhrhrhhhd’

Write (12,%)’
Write(12, *)'Repllcatlon $Vars Model’
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110

+

do 70 p=1,60

Continue -
IF (EndofFile) THEN
Print *,’Unexpected file format! TFile dnes nnt ’,
'have correct # of design points and reps.
Go to 1300
ENDIF 4
ReadCount=ReadCount+1l
Read(11,900,end=90) numchar, Model_ var

IF (numchar.EQ.’1’) THEN
num=1
ELSE ‘
IF (numchar.EQ.’2’) THEN
nun=2
ELSE
IF (numchaz.EQ.’3’) THEN
num=3
ELSE
IF (numchar.EQ.’4’) TH=
num=4
FLSE
IF (numchar.EQ.’Y’) THEN
num=5
ELSE
IF {(numchar.EQ.’6’) THEN
num=6
ELSE
IF (numchar.EQ.’7') THEN
nvm=7
ELSE :
IF (numchar.EQ.’8’) THE
nun=8
ELSE
Print *, ’‘Unexpected format in TEMP.DAT:
‘Numbers 1,2,3, etc., not found!~’
Go to 1300
ENDIF
ENDTF
ENDTF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF

Continue

IF (num.N£.1) THEN
m(num)=Model var

ELSE ;
continue

160

r
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100
901

120

- 130
140

150

160

70

- do 100 g=1,4 . '

IF ((m(q)(1l:1).NE.’R’).AND.ModelNotFound) THEN
Good_model (g)=m(q) o
numvar=numvar+l

ELSE '
McdelNotFound=.FALSE.
‘ENDIF
continue :
Write(12,901}p, numvar, (Good model(r),r=1,4)
FORMAT (’ -,4X,12,11X,12,6X,A2,1X,A2,1X,
, £2,1X,A2)
Go to 120 .
ENDIF ‘
GO TO 80

continue

IF (numvar.LE.0) Go to 140

do 130 s=1,numvar
if(m(s).EQ.’El’) then
emiller=emiller+1
endif

continue

varsmiller=varsmiller+namvar
cumeniller=cumeniller+emiller
cmiller=numvar-emiller
chertmiller(cmiller,emiller)=chartmiller(cmiller,

+ emiller)+1

do 150 t=1,8
m(t)=' *
Continus=

m(num)=Model var
do 160 v=1,4

Gocd_model (v)="'
continue

’

emiller=0
numvar=0

"ModelNotFound=.TRUE.

contiaue

write(12,*%) * ’
WELtE@(12,%) /R Arkhr kA kAR RN ERR A AR IRRRRARRR A RN

-+ IThdhkhhhhhhhkhdohkdbhdbhhhrkhhhrrhbhhhrhhbhhrd?

write(12,*) * ¢
IF (varsmiller.GT.0) THEN
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170

190
180

60

avgvars = real(varsmiller),/60.0
avgevars = real(cumemiller)/60.0
millerpm = l-(avgevars/avgvars)
ELSF
avgvars=0
avgevars=0
millerpm=0
ENDI¥

write(12,*) ‘The avg number of vars using
Miller’'’'s’,

* method was ’, avgvars
write(12,*) ’'The avg number of extraneous vars
from’,

' Miller’’s method was’, avgevars
write(12,*) ’***x** The PM for Miller’’s was °’,

millerpm, [ 2 2 2 X 2 X .
write(12,%) * '
write(l12,*) *
write(l12,*) ’‘Correct Vars (0-3, down) -VS- ',
' ‘Extraneous Vars (0-3,across)’
write(12,*) * _ .
write(12,*) ’ Table for Miller'’‘’s Method’
write(12,%) *

do 170 w=0,3
write(12,*) (chartmiller(w,x),x=0,2

continue
Write(13,*) n,’ ’,millerpm

do 180 y = 0,3
do 190 z = ¢,3
chartmiller(y,z)=0
continue
continue

varsmiller=0
cumemiller=0

Continue
Close(11)
Close(12)
Close(13)
GO TO 1200

* EXror trap: **kkwddkkhhdkdhhhhdkhdrrdkhohhhrhndd khkkkhdd

1000 Continue

Print 1100, ’+++ ERROR WHILE OPENING FILE +++',

' error code = ', IERROR

1100 FORMAT(/1X, A/ 1X, A, I8/)
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1200 CONTINUE ' .
Print *,’Counting complete. *, NewOut,’ written.’
Go to 1300 _

90 Print*,’End of File encountered at line ’,ReadCount
Print*, 'Design Poxnt ‘yn,’ Replication:’,p
num=1 : ‘
Model_var='**’
EndofFile=.TRUE.
Go to 110

1300 CONTINUE
END
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*hkkkxwkkkun** FORTRAN PROGRAM STEPCOUNT3.FOR ***kkkthhdhss
******************************k***********?*****************

SUBROUTINE Stepcount3 (NewOut)

integer num, numvar,h,i,j,k,n,p,q,r,8,t,v,v,x,y,2
integer emiller, varsmlller, rumemlller, cmiller
integer chartmiller(o 3,0:3), ReadCount
real cvgvars, avgevars, millerpm '

- character*2 m(13), Model var, Good_model(7), numchar
character*20 NewCut
logical ModelNotFound, EndofFile

num=0

emiller=0
varsmiller=0
cumemiller=0
cmiller=0
ReadCount=0
ModelNotFound=.TRUE.
EndofFile=.FALSE.

do 10 i=1,12
m(i)gl ’
10 continue

do 20 j=1,6
Good_model(j)=" '
20 _ continue

do 30 k=0,3
do 40 h=0,3
chartmlller(k h)=0
4C continue
30 continue . . R

cven (unit=11, file='temp.dat’, status=‘clid’,

+ iostat=IERROR, err=1000)

open (unit=12, file=NewOut, status='new’,
+ iostat=IERROR, err=1000)

open (unit=13, file='PMstep3.dat’, status='new’,
+ iostat=IERROR, err=1000)

write(13,*)’ DESIGNPOINT MIILLER’’S PM’

ReadCount=ReadCount+1
Read(11,900,end=90;numchar, Model var

900 Format (3X, A2 4X,A2)
IF (numchar. EQ ' 1) THEN
num=1

l64
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ELSE ’
IF (numchar. EQ.' 2') THEN
num=2
ELSE
IF (numchar.EQ.’ 3’) THEN
num=3
ELSE
IF (numchar.EQ.' 4') THEN
num=4 .
ELSE
IF (numchar. EQ.' 5’) THEN
num=5
ELSE :
IF (numchar.EQ.’ 6’ ) THEN
num=6
ELSE
IF (numchar. EQ.’ 7°') THEN
num=7
ELOE ' .
IF (numchar EQ.’ 8’) THEN
num=8
ELSE
"IF !{numchar.EQ.' 9 ) THEN
num—9
ELSE
IF (numchar.EQ.'IO') THEN
num=10
ELSE :
IF (numchar.EQ.’11’) THEN
num=11
ELSE
IF (numchar. EQ.’12') T i
num=12
ELSE ' ‘
Print *, ’‘Unexpected format in ""WP.DAT: ‘,
*Numbers 1,2,3, etc., r.:. found!’
Go to 1300
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENL_F

IF (num.NE.l) THBEN
Print *,’Processing terminated. Input file ‘,

1€5




+ ‘in unexpected format: lst numbnr must be 1.

Go to 1300
ELSE
m(nun)=Model var
ENDIF -

Do 60 n=2,64,2

Write(12,*)’ '

Write(12,*)’ ’

Write(12,*)’ '

Write(12,%) "*xxkxkkkkrdrkrehhs bk DESIGN POINT ',
+ n,' Shhhhhdhkhhhrhddhdihd’

Write (12,*)’

Write(12,*)’Feplication #vars Model’

do 70 p=1,50

80 ‘ Continue
IF (EndofFile) THEN
Print *,'Unexpected file format! File does not ’,
+ 'have the correct # cof design points and reps.’
Go to 1300
ENDIF
ReadCount=ReadCount+1l
Read(11,900,end=50) nunchar, Model_var

I¥ (numchar.EQ.’ 1’) THEN
num=1
ELSE
IF (numchar.EQ.’ 2’) THEN
num=2
ELSE
IF (numchar.EQ.’ 3’) THEN
num=3
ELSE
IF (numchar.EQ.’ 4’) THEN
num=4
ELSE
IF (numchar.EQ.’ 5’) *
num=5
ELSE
IF (pumchar.EQ.’ 6’) THEN
num=6
ELSE
IF (numchar.EQ.’ 7') THEN
num=7
ELSE
IF (numchar.EQ.’ 8’) THEN
num=8
ELSE
IF (numchar.EQ.’ 9') THEN
num=9
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100
901

120
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ELub
IF (numchar.EQ.’10’) THEN
num=10
ELSE
IF (numchar.EQ.’11') THEN
num=11
ELSE ,
IF (numchar.EQ.’12') THEN
nume=12
ELSE
Print *, ‘Unexpected format in TEMP DAT: ’,
‘Numbers 1,2,3, etc., not foundl’
Go to 1300
ENDIF
‘ENDIF
ENDIF
ENDIF
~ ENDIF
ENDIF
. ENDIF
. ENDIF
ENDIF
ENDIF
ENDIF
ENDIF

Continue
IF (num.NE.1l) THEN
m(num)=Model var

ELSE
continue
do 100 g=1,6
IF ((m(qg)(1:1).NE.’R’).AND. ModelNotFound) THEN

Good _mndel(q)=m(q)

ELSE
ModelNotFound=,FALSE.
ENDIF
continue
Write(12,901)p, numvar, (Good _model(r),r=1,6)
FORMAT (° ',4X,12,11X%,12,6X,A2,1X, A2, 1x,
A2,1X,A2, lx,A2 1x A2)
Go to 120
ENDIF
GO TO 80

continue

IF (numvar.LE.0) Go to 140

do 130 s=],numvar
if((m(s).EQ.’E1’).OR.(m(s). EQ ‘B2’).0R.

(m(s).EQ.’E3')) then

emiller=emiller+l
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130
140

150

160

70

B . ¥

R T

endif
continue

varsmiller=varsmiller+numver
cumemiller=cumemiller+emiller
cmiller=numvar-emiller

cl:ertmiller(cmiller, emlller)=chartmiller(cmlller,

+ emiller)+1

do 150 t=1,12

m(t)-l ’
Continue
m(num)~=Model var

do 160 v=1,6
Good_model (v)=' '
continue

emiller=0

numvars=0

McdelNotFound=,TRUE.
cor.tinue

write(12,*) * '

WELL@(12,%) "2ttt d Ak A RN N AR N AR AR R RS R R RN RN RN IR

+ B2 222X RS2 a2 X222 Rl 2ottt Ra B4

write(12,*) *

I? (varsmiller.GT.0) THEN
avgvars = veal(varsmiller)/60.0
avgevars = real(cumemiller)/60.0
millerpm = 1-(avgevara/avgvare)
ELSE
avgvars=)
avgevars={)
millerpm=0
ENDIF

write(12,*) ‘The avg number cf vars using Miller’’s’,

+ * method was ', avgvars

+

+

write(12,*) ‘The avg number of extraneous vars from’,

' Miller’’s method was’, avgevars

write(l2,*) ‘##*»+%e The PM for Miller’’s was ',
millerpm,’ wwewww:’

write(12,*) '

write(12,*) *

write(12,*) ’'Correct Vars (0-3, 4down) -VS- ’,

'Extraneocus Vars (0-3,across)’
write(12,*) * ¢
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write(12,*) ’ Table for Miller’’s Method’
write(12,*) *
do 170 w=0,3
write(12,*) (chartmiiler(w,x),x=0,3)

170 continue
Write(13,*) n,’ *,millerpm

do 180 y = 0,3
do 190 z = 0,3
chartmilla r(y,z)-o
190 continue
180 continue

varsmiller=0
cumemiller=0

60 Continue
Close(1l)
Close(12)
Close(13)
GO TO 1200

* EXror trap: A ea st e d st a byt kb ahdd btk ar et aehbanans

1000 Continue
Print 1100, ’+++ ERROI' WHILE OPENING FILE +4++,

+ ’ err: - code = ‘, IERROR
1100 FORMAT(/1X, A/ 1X, A, Ii/)

AR AR N RN R R R RN AR AR AN RRRRRR RN RRRARRAARRRRARA RN AR AN N RN

1200 CONTLNUE '
Print *,’Counting complete. *’, NewOut,’ written.’

90 Print*,’End of File encounterod at line ’,ReadCount
Print*, ‘Design Point:’,n,’ Replication:’,p
num=1
Model varm’##’
EndofFile=.TRUE.
Go to 110

1300 CONTINUE
END
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*

*
*
*
*
*
*
*
*
*
*

L2 A2 R 2Rl i a2 2 22222222 222t a sty R ]

TMSEP.FOR *
This program takes SAS R-Squared listings in any file
(with switches M3E, SP, CP, and B) and extracts models
with the lowest MSE, Cp, and Sp. Then, using the original
data files (0l.dat, 02.dat,...,64.dat), it calculates the
theoretical performance measure (TMSEP). This program
calls subrontines * * TMSEP1l.FOR, TMSEP2.FOR, TMSEP3.FOR,
and TMSEP4.FOR and writes the calculated TMSEE’s to
TMSEP.DAT.

(222222222 X222 22222222 X222 2R 22222 2R R 2 a2 222022222

Character*20 NewIn
Character*132 Line
CHARACTER I, J, K, L
Integer Var

Logical VarFlag,ErrFlag

Continue

Print *,’Name of file to examine? (20 char or less;’,
' ' "xn" to quit)’

Read (*,’(A20)’) NewlIn

If (NewIn(1:1).EQ.’*’) GO TO 999

+

Continue

Print *,’'Number of extraneous variables? (1 or 3
+ONLY! 1)’

Read (*,’'(Il)') Var

If ((Var.NE.1l).AND.(Var.NE.3)) Go To 7

VarFlag = (Var.EQ.3)
Open (unit=10, file=NewIn, status='QLD’,
& iostat=IERROR, err=1000)

Open (unit=11, file=’'temp.dat’, status=‘NEW’,
& iostat=IERROR, err=1000)

10 Continue

Read(10,200,END=888) Line
I = LINE (14:14)

J = LINE (15:17)

K = LINE (9:9)

L = LINE (10:12)

IF (VarrFlag) GO TO 777

IF ((I.EQ.’1’).AND.(J.EQ.’ ')) THEN
WRITE (11,200) LINE
ELSE
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IF ((Y.EQ.’2’).AND.(J.EQ.’ *)) THEN
WRITE (11,200) LINE

ELSE :

IF ((I.EQ.'3’).AND.(J.EQ.’ *)) THEN
WRITE (11,200) LINE

ELSE
IF ((I.EQ.’4’).AND.(J.EQ.’ ’)) TEEN

WRITE (11,200) LINE :

ENDIF

ENDIF
ENDIF
ENDIF

GO TO 10

Continue

IF ((K.EQ.’1’).AND.(L.EQ.’ ')) THEN
WRITE (11,200) LINE
ELSE

IF ((K.EQ.’2’).AND.(L.EQ.’  ‘)) THEN
WRITE (11,200) LINE
ELSE

IF ((K.EQ.’3’).AND.(L.EQ.’ ')) THEN
WRITE (11,200) LINE
ELSE
IF ((K.EQ.’4’).AND.(L.EQ.’ ‘)) THEN
WRITE (11,200) LINE
ELSE
IF ((K.EQ.’5’).AND.(L.EQ.’ ’)) THEN
WRITE (11,200) LINE
ELSE
IF ((K.EQ.’€’).ANC.(L.EQ.’ ')) THEN
WRITE (11,200) LINE
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF

171




ENDIF

GO TO 10

200 Format (Al132)

888 Continue
Close(10)
Close11)

Print *,’Filtering complete on ’,Newla,’.’,
+ ' TMSEP calculations begun.’

ErrFlag = .FALSE.

IF (VarFlag) THEN
Call TMSEP3(ErrFlagqg)
If (ErrFlag) Go to §
Print *, 'TMSEP’’s calculated for designpoints with’,

+ ' 3 extraneous variables and written to TMSEP3.DAT.’
Print *,’ '
ELSE
Call TMSEP1(ErrFlag)
If (ErrFlag) Go to 5.
Print *, ’TMSEP’’s calculated for designpoints with’,

+ * 1 extraneous variables and written to
TMSEP1.DAT."’
Print *,’
ENDIF
GO TO 5

999 Continue

Print *,’Processing complete. Program terminated.’
Stop

* EXIOr LtIrap: Mt ddnu st vtk ek kb iR R kRN RN RN AR NN E

1000 Contirnue
Print 1100, ‘++4+ ERROR WHILE OPENING FILE +++',
& ’ error code = ‘', IERROR
110C FORMA(/1X, A/ 1X, A, 18/)
GO TO 5
RERARRARERRER, A RRECRRRARRRANRRRARARRNRRNAR RN ANARRNRR AN R AR NN

END
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**********P***************i**********************t*********

FORTRAN PROGRAM TMSEP1.FOR

*

*

* This program is desioned to take a modifed SAS progam and
* an existing deta set and find the "real" MSEP for the

*
L]

models chusen by mse, sp, and cp criteria.
L3220 22 SRR 2R AR 2R R RRR2R2d22R X222 R o 2 2t X

Subroutine TMSEP1(ErrFlag) -

Integer h,i,j,k,p,x,s,ptrmse,ptrsp.ptrcp '
Integer check(4),nam{15)

Real b0(15),r2(15),cp(15),mse(15),8p(35),betas(4,15)
Peal x(4, AO),x3ex1(4 20),ex,y
Real minmse,mincp,minsp

Real ypredcp,ypredmse,ypredsp
Real ymseprmse,ymsepsp,ymsepcp
Real yvsepmse,yssepsp,yssepcp
Real sumyssepmse, sumyssepsp, Sumyssepcp.
Real sumdifmse,sumdifsp,sumdifcp
Real dpymsepmse,dpymseosp,dpymseycp

Character*6 Infile

Logical ErrFlag
check(1)=1
check(2)=5
check(2)=11
check(4)=15

" Open(unit=11,file= ‘TEMP.DAT’,status=‘old’,
+ iostat=IERROR,err=1000)

Open (unit=13,file='TMSEP1.DAT’,status=’'new’,
+ iostat=IERROR,err=1002)

I

Write (13,902)
902 Format (1X,’TMSEPs calculated for the follow ng

+ methods:’)

Write (13,901)
901 Format (1X,’'DP’,9X,'MSE’,13X,'SP’,13X,'CP’)

Do 5 r=1,63,2

If (r.EQ.1) then
Intile=’0l.dat’
Elase
If (r.EQ.3) then
Infile='03.dat’
Else
If (r.EQ.5) then
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Infile=’05.dat’
Else
If (x.EQ.7) then
Infile=’07.dat’
Else
If (r.EQ.9) then
Infile=’09.dat’
Else .
If (r.EQ.11) then
Infile='11l.dat’
Else .
If (r.EQ.13) then
Infile=’13.dat’
Else
If (£.EQ.15) then
~ Infile=’]5.dat’
Else
If (r.EQ.17) then
Infile=’17.dat’
Flse
If (r.EQ.19) then .
Infile=’"19.dat’
Else
If (r.EQ.21) then
Infile=’21.dat’
Else
If (r.EQ.23) then
Infile=’23.dat’
Else
If (r.EQ.25) then
Infile='25.dat’
Else :
If (r.EQ.27) then
Infile=~’27.dat’
Else
~_I1f (r.EQ.25) then
Infile='29.dat’
Else
If (r.EQ.31) then

Infile=’'31l.dat’ ~

Else
If (r.EQ.33) chen
Infile=’33.dat’
Else
If (r.EQ.35) then
Infile=’35.dat’
Else
Infile=’37.dat’
Else
If (r.EQ.3%) then
Infile='39.dat’
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Else
If (r.EQ.41) then
Infile=‘41l.dat’
Else :
If (x.EQ.43) then
Infile=’43.dat’
Else
if (r.EQ.45) then
fafile=’45.dat’
Else ,
If (v.2EQ-47) then
Infile=’47.dat’
Llse
If (r.EQ.49) then
Infile=’49.dat’
Else .
If (r.EC.51) then
Infile=’51.dat’
- Else .
If (r.EQ.53) then
Infile=’53.dat’
" Else :
If (r.EQ.55) then
Infile=’55.dat’
Else
If (r.EQ.57) ther
Infile=’57.dat’
Else
If (r.EQ.59) then
Infile=’59.dat’
Else
If (r.EQ.61) then
Infile=’6l.dat’
Else

If (r.EQ.63) then -

Infile=’63.dat’
Bndif
Endif
Endif
Endif
Endif
Endif
Endif
Endif

W Endif

Endif

Endif
BEndif
Endif
Endif

Endif
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Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif ‘

Open(unit=12,file=Infile,staﬁus='old',iostat=IERROR,

err=1001)

sumyssepmse = 0
sumyssepsp = 0
sumyssepcp = 0
sumdifmse = 0
sumdifsp = 0
sumdifcp = 0

Do 20 k=1,60

minmse = 10000
mirsp = 10000
mincp = 10000
yssepmse=0

yssepsp =0
yssepcp =0
ptrmse = 0
ptrsp =0
ptrcp =0

Do 10 i=1,15

Read (11,*,end=1003) num(i), r2(i), cp(l),
mse(i), sp(i), bO(i), betas(l,i), betas(2,1i),

betas(3,i), betas(4,1i)
Continue

Do 30 j=1,4

If (mse(check(j)).lt.minmse) then

minmse = mse(check(j))
ptrmse = check(j)
Endif

If (sp(check(j)).lt.minsp) then

minsp = sp(check(j))
ptrsp = check(3])
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Endif
- If (cp(check{j)).lt.mincp) then
mincy = cp(check(j))
ptrcp = check(])
Endif
Continue

If(((r.GE.17).AND. (r. LE 32)).0CR.(r.GE.49)) then
8 = 29

Else

s = 10

Endif

Do 50 h= 1,s

Read (12,* ,end=1004) set,y,x(1, h),x(2 h),x(3,h),.
x(4,h),ex

ypredmse= b0 (ptrmse)
ypredsp = b0{ptrsp)
ypredcp = b0 (ptrcp)
yactual = 0
x3ex1(1,h)= x(1,h)
x3ex1(2,h)= x(2,h)
x3ex1(3,h)= x(3,h)
x3exl(4,h)= ex

Do 60 p=1,4
yactual = yactual+x(p,h)
Continue

Do 70 p=1,4

ypredmse = ypredmse + betas(p,ptrmse)*x3ex1(p,h)
ypredsp = ypredsp + betas(p,ptrsp) *x3exl(p,h)
ypredcp = ypredcp + betas(p,ptrcp) *x3exl(p,h)
Contlnue -

yssepmse = ((ypredmse-yactual)**rea1(2)) +
yssepmse

yssepsp = ((ypredsp ~yactual)**real(2)) + yssepsp
yssepcp = ((ypredcp ~yactual)**real(2)) + yssepcp

Continue

sumyssepmse = sumyssepmse + yssepmse
sumyssepsp = sumyssepsp + yssepsp
sumyssepcp = sumyssepcp + yssepcp
sumdifmee = sumdifmse + (s-num(ptrmse))
sumdifsp = sumdifsp + (s-num(ptrsp))
sumdifcp = sumdifcp + (s-num(ptrcp))

Continue
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sumyssepmse / sumdifmse

dpymsepmse =
dpymsepsp = sumyssepsp / sumdiisp
dpymsepcp = sumyssepcp / sumdifcp
Write(13,900) r, dpymsepmse, dpymsepsp, dpymsepcp
900 Format (1X,I12,5X,F10.6,5X,F10.6,5X,F10.6) '
Close (12)
5 Continue
Close (11)
Close (13)
Go to 1300

kkkkk*Error trap**&*****************************************

1000 Print *,’Somethinc’’s wrong with TEMP.DAT.'
‘ Go to 1100
1001 Print *,’Something’’s wrong with ’,Infile
Go to 1100
1002 Print *,’Can’’t seem to create TMSEP1l.DAT."’
Go to 1100 ' .
1003 Print *, 'TEMP.DAT in unexpected format.’
Go to 1300
1004 Print *, ’'File ’,Infile,’ is in an unexpected format.’
Go to 1300

1100 Continue : : .
- Print 1200, ’'+++ ERROR WHILE OPENING FILE +++’,
+ ! error code = ',TERROR
1200 Format (/1X, A/ 1X, A, I8/))
ErrFlag = .TRUE.
L2222 R X222 R 2R X3 X2 X XXX X2 XX X2 XY XA SXXERR RS R X

1300 Continue
END

178




***k********************************************************
* FORTRAN PROGRAM TMSEP3.FOR

. ,

* This progyram is designed to take a modifed SAS progam and
* an existing data set and find the "real®" MSEP for the .

* models chosen by mse, sp, and cp criteria.
»*

_***********k************************************************

Subroutine TMSEP3(ErrFlag)

Integer h,i,j,k,p,r, s,ptrmse,ptrsp,ptrcp
Integerx cheﬂk(G) num(63)

Real b0(62),r2(63), cp(63),mse(63) sp(63) ,betas(6, 63)
Real x(4 20) x3ex3(6 20),y,exl, ex2 ex3

Real minmse,mincp,minsp

Real ypredcp,ypredmse,ypredsp

Real ymsepmse,ymsepsp,ynsepcp

Real yssepmse,yssepsp,yssepcp

Real sumyssepmse, sumYSaepsp,sumyssepgp

Real sumdifmse,sumdifsp,sumdifcp

Real dpymsepmse dpymsepsp,dpymsepcp

Character*6 Infile

Logical ErrFlag
check(1l)=1
check(2)=7
check(3)=22
check(4)=42
check(5)=57
check(6)=63

Open(unit=11,file= ‘TEMP.DAT',status='old’,
+iostat=IERROR, err=1000)

. Open (un1t=13 file='TMSEP3. DAT',status='new'
+iostat=IERROR,err=1002)

Write (13,902)

902 Format (1X;'TMSEPs calculated for the following

+ methodas:’)
Write (13,901)

901 format (1X, ‘DP’,9X,’MSE’,13X,'SP’,13X,'CP’)

Do 5 r=2,64,2

If (r.EQ.2) then
Infile=’02.dat’
Else
If (r.EQ.4) then
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Infile='04.dat’
Else
1f (r.EQ.6) then
Infile='06.dat’
Else ‘
If (r.EQ.8) then
Infile='08.dat’
Else
If (r.EQ.10) then
Infile=’10.dat’
Else
If (r.EQ.12) then
Infile='12.dat’
Else
If (r.EQ.14) then
Infile='14.dat’
Else
If (r.EQ.16) then
Infile=’16.dat"’
' Else
| If (r.EQ.18) then
| "infile='18.dat’
| Else
: If (r.EQ.20) then
| Infile='20.dat’
‘ Else
i Jf (r.EQ.22) then
{ Infile=’22.dat’
, Else
| I1f (r.EQ.24) then
j Infile=’24.dat’
Else
’ If (v.EQ.26) then
[ Infile='26.aat’
f Else
| If (r.EQ.28) then
Infil==’28.dat’
ulse
If (r.EQ.30) then
Infile='30.dat’
Else
It (r.EQ.32) then
Infile=’'32.cat’
Else
If (r.EQ.34) then
Infile='34.dat’
Else
If (r.EQ.36) then
Infile='36.dat’
Else
If (r.EQ.38) then
Infile=’'3¢.dat’
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Else
If (r.EQ.40) then
Infile=’40.dat’
Else ‘
If (r.EQ.42) then
Infile='42.dat’
Else
If (r.EQ.44) then
Infile=’44.dat’
Else ‘
I1f (r.EQ.46) then
Infile=’46.dat’
Else '
If (r.EQ.48) then
Infile=’48.dat’
Else
If (r.EQ.50) then
Infile=’50.dat’
Else , :
If (r.EQ.52) then
Infile=’52.dat’
Else
If (r.EQ.54) then
Infile- 4 54 odat '
Else
If (r.EQ.56) then
Infile=’56.dat’
Else ‘
If (r.EQ.58) then
Infile=’58.dat’
Else
If (r.EQ.60) then
Infile=’60.dat’
Else .
If (r.EQ.62) then
Infile=’62.dat’
Else
If (r.EQ.64) then
Iafile=’64.dat’
Endif
Endif
Bndif
Bndif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
- Endif
Endif
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Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
Endif
"Endif
Endif

Endif
'Open(unit-12,file-Infile,statusa'old',iostat—IERROR,
‘ err=1001) T

sumyssepmse = 0
sumyssepsp = 0
sumyssepcp = 0
sumdifmse = 0
sumdifsp = 0
sumdifcp = 0

Do 20 k=1,60 -

minmse = 10000

minsp = 10000

mincp = 10000
. yssepmse=0 e
yssepsp =0 ‘ ‘

yssencp =0

ptimse = 0

ptrsp = 0

ptrcp = 0

Do 10 i=1,63

Read (11,*,end=1003) num(i), r2(i), cp(l),
mse(i), sp(i), bo(i), betas(l,i), betas(2,1),
betar(3,i), betas(4,i),

betas(5,i), betas(6,1i)

10 Continue

+4+ 4

Do 30 j=1,6
1f(mse(check(j)).lt.minmse) then
minmse = mse(check(j))
ptrmse = check(])
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Endif
If (sp(check(j)). 1t. minsp) then
minsp = sp(check(j))
ptrap = check(j)
Endif
If (cp(check(j)).lt.mincp) then
mincp = cp(check(j))
ptrcp = check(j)
Endif
Continue

If(((r.GE.17).AND.(r.LE.32)).OR.(r.GE.49)) then
s = 20
Else '
s = 10
Endif

Do 50‘h- 1l,s
Read (12, *,end-1004) set,y,x(l h) x(2,h),

+ x(3, h) x(4, h) exl,ex2,ex3

ypredmse= b0 (ptrmse)
ypredsp = b0 (ptrsp)
ypredcp = b0 (ptrcp)
- yactual = 0
x3ex3(1,h)= x(i,h)
x3ex3(2,h)= x(2,h)
x3ex3(3,h)= x(3,h)
x3ex3(4,h)= exl
x3ex3(5,h)= ex2
x3ex3(6,h)= ex3

yactual = yactual+x(p,h) :
Continue

Do 70 p=1,6 :

ypredmse = ypredmse + betas(p,ptrmse)*x3ex3(p,h)
" ypredsp = ypredsp + betas(p,ptrsp) *x3ex3(p,h)
ypredcp = ypredcp + betas(p,ptrcp) *x3ex3(p,h)
Continue '

yssepmse = ((ypredmse-yactual)**rea1(2)) +

+ yssepmse

yssepsp = ((ypredsp‘-yactual)**real(Z)) + yssepsp
yssepcp = ((ypredcp -yactual)**real(2)) + yssepcp

Continue

sumyésepmse = sumyssepmse + yssepmse
sumyssepsp = sumyssepsp + yssepsp
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sumyesepcp = sumyssepcp + yssepcp
sumdifmse = sumdifmse + (s-num(ptrmse))
sumdifsp = sumdifsp + (s-num{ptrsp))
sumdifcp = sumdifcp + (s-num(ptrcp))

20 Continue

dpymsepmse. = suﬁyssepmse / sumdifmse
dpymsepsp = sumyssepsp / sumdifsp
dpymsepcp = gumyssepcp / sumdifcp

Write(13,900) r, dpymsepmse, dpymsepsp, dpymsepcp
900 Format (1X,I2,5X,F10.6,5X,F10.6,5X,F10.6)

Close (12)
5 Continue

Close (11)
Close (13)
Go to 1300

RRRRRAETTOL Lrapt v Ak A AR AR A AR A AR AR R AR AR AR AR RN AR RN AR AR AR

1000 Print *,’Something’’s wrong with TEMP,DAT.’
Go to 1100

1001 Print *,’Something’’s wrong with ’,Infile

. . Go to 1100 ‘

1002 Print *,’Can’’t seem to create TMSEP3.DAT.'

Go to 1100 '

1003 Print *, 'TEMP.DAT in unexpected format.’
Go to 1300 E

1004 Print *, 'File ’,Infile,’ is in an unexpected format.’
Go to 1300

1100 Continue '
Print 1200, ’+++ ERROR WHILE OPENING FILE +++°',
+ ' error code = ’,IERROR

1200 Trormat (/1X, A/ 1X, A, 18/) ’

ErrFlag = ,.TRUE.
(2222 22222222222 X222 X2 X2 22223 X222 2222222 L )

1300 Continue
END
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~ SAS Program ERROR1_ALL.SAS

’
option linesize=80;

filename new
data new;
infile new;
input set y
proc rsquare
by set;
model y= x1

filename new
data new;
infile new;
input set y
proc rsquare
by set;
model y= x1

filename new
data new;
infile new;
input set y
proc rsquare
by set;
model y= x1

filename new
data new;
infile new;
input set y
proc rsquare
by set;
model y= x1

filename new
data new;
infile new;
input set y
proc rsquare
by set;
model y= x1

‘0Ol.dat’;

xl x2 x3 xi el ;-
data=new mse sp cp;
x2 x3 el ;
‘03.dat’;

x1 x2 x3 x4 el }
data=new mse sp cp;
x2 x3 el ;

‘05.dat’;

x1 x2 x3 x4 el ;
data=new - mse sp cp;

x2 x3 el ;

*07.dat’;

xl x2 x3 x4 el ;
data=new mse sp cp;

x2 3 el

’63.dat’;

Xl x2 x3 x4 el ;
data=new mse sp cp;

x2 x3 el ;




e

ShS Program ERROR3_ALL.SAS

’
- option linesize=80;

filename new
data new;
infile new;
input set y
proc rsquare
by set;

- model y= xl

filename new
data new;
infile new;
input set y
proc rsquare
by set;
model y= x1

filename new
data new;
infile new;
input set y
proc rsquare
by set;
model y= x1

filename new
data new;
infile new;
input set y
proc rsquare
by set;

model y= x1

L ]
filename new
data new;

- 'infile new;

inpnt set y
proc rsquare
by set.;

model y= x1

‘02.dat’;

x1 x2 x3 x4 el e2 e3
data=new mse s8p cp;

x2 x3 el e2 e3;

’04;dat';

x1l x2 x3 x4 el e2 e3 @;
data=new mse sp Cp;

x2 x3 el e2 e3;
*06.dat’;

x1 x2 x3 x4 el e2 e3 @;

data=new  mse sp cp;
x2 x3 el e2 e3 ;
'08.dat’;

x]1 x2 x3 x4 el e2 e3 8;
data=new mse sp cp;

x2 x3 el 22 e3 ;

'64.dat’;

x4 el e2 e3 @;
mse sp Cp;

x1 x2 x3
data=new

x2 x3 el e2 e3
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SAS Program MILLERI1BETA.SAS

FILENAME NEW ‘Ol.dat’;

DATA NEW; -

INFILE NEW;

INPUT SETNUM Y X1 X2 X3 X4 EIl;

IF SETNUM*= 1 THEN DELETE;

PROC RSQUARE DATA=NEW B; .
MODEL Y = X1 X3 X2 /INCLUDE=3;

FILENAME NEW '0l.dat’;

DATA NEW;

INFILE NEW;

INPUT SETNUM Y X1 X2 X3 X4 El;

IF SETNUM"= 2 T4EN DELET™;

PROC RSQUARE DATA=NEW B,

MODEL Y = X1 X3 X2 /INCLUDE=3;

FILENAME NEW ‘Ol.dat’;
DATA NEW;

- INFILE NEW;

INPUT SETNUM Y X1 X2 X3 X4 E1;

IF SETNUM"= 3 THEN DELETE;

PROC RSQUARE DATA=NEW B;

MODEL Y = X2 ‘ /INCLUDE=1;

FILENAME NEW ‘Ol.dat’;

DATA NEW;

INFILE NEW;

INPUT SETNUM Y X1 X2 X3 X4 El1;
IF. SETNUM"= 4 THEN DF-.ETE;

PROC RSQUARE DATA=NEW B;

MODEL Y = X3 /INCLUDE=1;

FILENAME NEW ‘Ol.dat’;

DATA NEW;

INFILE NEW;

INPUT SETNUM Y X1 X2 X3 X4 E1;

IF SETNUM"= 5 THEN DELETE;

PROC RSQUARE DATA=NEW B;

MODEL Y = X! X3 /INCLUDE=2;

FILENAME NEW ’0Ol.dat’;

DATA NEW;

INFILE NEW;

INPUT SETNUM Y X1 X2 X3 X4 El;

IF SETNUM"= 6 THEN DELETE;

PROC RSQUARE DATA=NEW B;

MODEL Y = X1 X3 El /INCLUDE=3;
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FILENAME NEW ‘03.dat’;
DATA NEW; ‘

INFILE NEW; ,
INPUT SETNUM Y X1 X2 X3 X4 El;

IF SETNUM“= 1 THEN DELETE;

PROC RSQUARE DATA=NEW B;

MODEL Y = X1 X3 X2 E1 /INCLUDE=4;

FILENAME NEW ’'03.dat’;
DATA NEW;

INFILE NEW; '

INPUT SETNUM Y X1 X2 X3 X4 El;

IF SETNUM"= 2 THEN DELETE;

PROC RSQUARE DATA=NEW B;

MCDEL Y = X1 X3 /INCLUDE=2;

FILENAME NEW ‘03.dat’;
DATA NEW;

INFILE NEW;

INPUT SETNUM Y X1 X2 X3 X4 E1;

IF SETNUM“= 3 THEN DELETE;

PROC RSQUARE DATA=NEW B;

MODEL Y = X1 X2 X3 /INCLUDE=3;

FILENAME NEW ‘03.dat’;
DATA NEW;

INFILE NEW;

INPUT SETNUM Y X1 X2 X3 X4 E1l;
IF SETNUM"= 4 THEN DELETE;

PROC RSQUARE DATA=NEW B;

MODEL Y = X3 X2 X1 E1 /INCLUDE=4;

FILENAME NEW ’‘03.dat’;
DATA NEW;

INFILE NEW;

INPUT SETNUM Y X1 X2 X3 X4 El:

IF SETNUM"= 5 THEN DELETE:;

PROC RSQUARE DATA=NEW B;

MODEL Y = X3 X1 /INCLUDE=2;

FILENAME NEW ‘O3.dat’;

DATA NEW;

INFILE NEW; :

INPUT SETNUM Y X1 X2 X3 X4 El;
IF SETNUM"= & THEN DELETE;
PROC RSQUARE DATA=NEW B;

189




" MODEL Y = X3 X1 X2 /INCLUDE=3;

FILENAME NEW ‘63.dat’;

DATA NEW;

INFILE NEW;

INPUT SETNUM Y X1 X2 X3 X4 El;

IF SETNUM"= 1 THEN DELETE;

PROC RSQUARE DATA=NEW B;

MODEL Y = X1 X3 X2 El1 /INCLUDE=4;

FILENAME NEW ’‘63.dat’;

DATA NEW;

INFILE NEW;

INPUT SETNUM Y X1 X2 X3 X4 El;

IF SETNUM“= 2 THEN DELETE;

PROC RSQUARE DATA=NEW B; -
MODEL Y = X1 X2 X3 /INCLUDE=3;

FILENAME NEW ’63.dat’;

DATZ. NEW;

INFILE NEW;

INPUT SETNUM Y X1 X2 X3 X4 El;

IF SETNUM“= 3 THEN DELETE;

PROC RSQUARE DATA=NEW B;

MODEL Y = X3 X2 X1 E1 /INCLUDE=4;

FILENAME NEW ’'63.dat’;

DATA NEW;

INFILE NEW;

INPUT SETNUM Y X1 X2 X3 X4 El;

IF SETNUM“= 4 THEN DELETE;

PROC RSQUARE DATA=NEW B;

MODEL Y =|X3 X2 X1 /INCLUDE=3;

FILENAME NEW ‘63.dat’;

DATA NEW; '

INFILE NEW

INPUT SETNUM Y X1 X2 X3 X4 El;

IF SETNUM"= 5 THEN DELETE;

PROC RSQU DATA=NEW B;

MODEL Y = X2 X1 X3 /INCLUDE=3;
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FILENAME NEW ’63.dat’;

DATA NEW;

INFILE NEW; .

INPUT SETNUM Y X1 X2 X3 X4 El;

IF SETNUM“=60 THEN DELETE;

.PROC RSQUARF DATA=NEW B;

MODEL Y = X2 X1 X3 /INCLUDE=3;
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- SAS Program MILLER3BETA.SAS

FILENAME NEW ‘02.dat’;

DATA NEW;

INFILE NEW; .
INPUT SETNUM Y X1 X2 X3 X4 El1 E2 E3;
IF SETNUM“= 1 THEN DELETE;

INTERCEP = 1;

PROC RSQUARE DATA=NEW NOINT B;

MODEL Y = INTERCEP;

FILENAME NEW ‘'02.dat’;
DATA NEW; .
INFILE NEW;

INPUT SETNUM Y £1 X2 X3 X4 E1 E2 E3;
IF SETNUM“= 2 THEN DELETE;

INTERCEP = 1; :

PROC RSQUARE DATA=NEW NOINT B;

MODEL Y = INTERCEP;

FILENAME NEW ‘02.dat’;

DATA NEW; '

INFITE NEW;

IN2UT SETNUM Y X1 X2 X3 X4 E1 E2 E3;

IF SETNUM"= 2 THEN DELETE;

PROC RSQUARE DATA=NEW B;

MODEL Y = X3 E2 X2 /INCLUDE=3;

FILENAME NEW ’02.dat’:
DATA NEW;

INFILE NEW;

INPUT SETNUM Y X1 X2 X3 X4 E1 E2 E3;

IF SETNUM"= 4 THEN DELETE;

PROC RSQUARE DATA=NEW B; :
MODEL Y = X3 X2 X1 /INCLUDE=3;

FILENAME NEW ’‘02.dat’;

DATA NEW;

INFILE NEW;

INPUT SETNUM Y X1 X2 X3 X4 E1 E2 E3;

IF SETNUM“= 5 THEN DELETE;

PROC RSQUARE DATA=NEW B;

MODEL Y = X1 X3 E1 /INCLUDE=3;
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FILENAME NEW ‘04.dat’;
DATA NEW;

INFILE NEW;

INPUT SETNUM Y X1 X2 X3 X4
IF SETNUM"= 1 THEN DELETE;
PROC REQUARE DATA=NEW B;
MODFL Y = X2 ¥3 X1

FILENAME NEW ’04.dat’;
DATA MEW;

INFILE NEW;

INPUT SETNUM Y X1 X2 X3 X4
IF SETHUM*= 2 THEN DELETE;
PROC RSQUAFE DATA=NEW B;
MODEL Y = X2 X1 X3

FILENAME NEW ‘04.dat’;
DATA NEW;

INFILE NEW;

INPUT SETNUM Y X1 X2 X3 X4

IF SETNUM"= 3 THEN DELETE;

PROC RSQUARE DATA=NEW B;
MODEL Y = X2 X3

FILENAME NEW '0O4.dat’;
DATA NEW;

INFILE NEW;

INPU1 SETNUM Y X1 X2 X3 X4
IF SETNUM"= 4 THEN DELETE;
PROC RSQUARE DATA=NEW B;
MODEL Y = X3

FILENAME NEW '0O4.dat’;
DATA NEW;

INFILE NEW;

INPUT SETNUM Y X1 X2 X3 X4
IF SETNUM"= 5 THEN DELETE;
PROC RSQUARE DATA=NEW E;
MOPBL Y = X2 X1 X3

FILENAME NEW °‘04.dat’;
DATA NEW;

INFILE NEW;

INPUT SETNUM Y X1 X2 X3 X4
IF SETNUM"= 6 THEN DELETE;
PROC RSQUARE DATA=NEW B;
MODEL Y = X2 X1

El E2 E3;

lxucnunz-s;

El E2 E3;

/INCLUDE=3;

Bl E2 E3;

/INCLUDE=2;

El E2 E3;

/INCLUDE=1;

El E2 E3;

/INCLUDE=3;

El E2 E3;

/INCLUDE=2;
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FILENAME NEW '64.dat’;
DATA NEW;

INFILE NEW;

INPUT SETNUM Y X1 X2 X3 X4
IF SETNUM“= 1 THEN DELETE;
PROC RSQUARE DATA=NEW B;
MODEL Y = X2 X3 X1

FILENAMZE NEW ‘64.dat’;
DATA NEW;

INFILE NEW;

INPUT SETNUM Y X1 X2 X3 X4
IF SETN'M"= 2 THEN DELETE;
PROC RSQUARE DATA=NEW B;
MODEL Y = X2 X3 X1 E3 E2

FILENAME NEW ‘64.dat’;
DATA NEW;

INFILE NEW;

INPUT SETNUM Y X1 X2 X3 X4
Ir SETNUM“= 3 THEN DELETE;
PROC RSQUARE DATA=NEW B;
MODEL Y = X1 X2 X3

FILENAME NEW ‘64.dat’;
DATA NEW;

INFILE NEW;

INPUT SETNUM Y X1 X2 X3 X4
IF SETNUM*= 4 THEN DELETE;
PROC RSQUARE DATA=NEW B;
MODEL Y = X3 X2

_FILENAME NEW ‘64.dat’:
DATA NEW;

INFILE NEW;

INPUT SETNUM Y X1 X2 X3 X4
IF SETNUM"= 5 THEN DELETE;
PROC RSQUARE DATA=NEW B:
MODEL Y = X1 X2 X3 El

PILENAME NEW ‘64.dat’;
DATA NEW;

INFILE NEW;

INPUT SETNUM Y X1 ¥2 X3 X4

El E2 E3;

/INCLUDE=3;

El E2 E3;

/INCLUDE=S ;

El E2 E3;

/INCLUDE=3;

El E2 E3;

/INCLUDE=2;

El E2 E3;

/INCLUDE=4;

El E2 E3;
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IF SETNUM"=60 THEN DELETE;
PROC RSQUARE DATA=NEW B;
MODEL Y = X2 X1 X3

Lyt

deh e ot
\—‘WA..‘ -

e e R

/INCLUDE=3;
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SAS Program PM.EAS

option linesize=80;

filename new ’'PM.dat’;

data new;

infile new;

input DP ymse ysp ycp YMILLERS CONST A B AB C AC BC ABC D
AD BD ABD

CD ACD BCD ABCD E AE BE ABE CE ACE BCE ABCE DE .
ADE BDE ABDE CDE ACDE BCDE ABCLCE F AF BF ABF CF ACF
BCF ABCF DF ADF BDF ABDF CDF ACDF BCDF AFCDF EF AEF

-e w9

BEF :
ABEF CEF ACEF BCEF ABCEF DEF ADEF BDEF ABDE® CDEF

ACDEF BCDEF ABCDEF;

PROC PRINT;
TITLE 'Analysis of Performance Measures and Significant
Contributing Factors’;
ID DP;
VAR ymse ysp ycp YMILLERS CONST A B AB C AC BC ABC D.AD BD
ABD
CD ACD BCD ABCD E AE BE ABE CE ACE BCE ABCE DE
ADE BDE ABDE CDE ACDE BCDE ABCDE F AF BF ABF CF ACF
BCF ABCF DF ADF BDF ARDI CDF ACDF BCDF ABCDF EF AEF

BEF
ABEF CEF ACEF BCEF ABCEF DEF ADEF BDEF ABDEF CDEF

ACDEF BCDEF¥ ABCDEF;

proc stepwise;
model ymse = A B AB C AC BC ABC D AD BD ABD
CD ACD BCD AEBCD E AE BE ABE CE ACE BCE ABCE DE
ADE BDE ABDE CDE ZCDE BCDE ABCDE F AF BF ABF CF ACF
, . BCF ABCF DF ADF BDF ABDF CDF ACDF BCDT ABCDF. EF AEF
BEF '
ABEF CEF ACEF BCEF ABCEF DEF ADEF BDEF ABDEF¥ CDEF
ACDEF BCDEF ABCDEF -
/ stepwise slstay=.01;

proc stepwise;
model ysp = A B AB C AC BC ABC D AD BD ABD
CD ACD BCD ABCD E AE BE ABE CE ACE BCE ABCE DE
ADE BDE ABDE CDE ACDE BCDE ABCDE F AF BF ABF CF ACF
BCF ABCF DF ADF BDF ABDF CDF ACDF BCDF ABCDF EF AEF
BEF
ABEF CEF ACEF BCEF ABCEF DEF ADEF BDEF ABDEF CDEF
ACDEF BCDEF ABCDEF
/ stepwise slstay=.01;

proc stepwise;
model ycp = A B AB C AC BC ABC D AD BD ABD
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CD ACD BCD ABCD E AE BE ABE CE ACE BCE ABCE DE
ADE BDE ABDE CDE ACDE BCDE ABCDE F AF BF ABF CF ACF
BCF ABCF DF ADF BDF ABDF CDF ACDF BCDF ABCDF EF AEF

BEF
ABEF CEF ACEF BCEF ABCEYl DEF ADEF BDEF ABDEF CDEF
" ACDEF BCDEF ABCDEF i
-/ stepwise slstay=.01;

. proc stepw1se'
" model YMILLERS = A B AB C AC BC ABC D AD BD ABD
CD ACD BCD ABCD E AE BE ABE CE ACE BCE ABCE DE
"ADE BDE ABDE CDE ACDE BCDE ABCDE F AF BF ABF CF ACF
BCF ABCF DF ADF BDF ABDF CDF ACDF BCDF ABCDF EF AEF
BEF
ABEF CEF ACEF BCEF ABCEF DEF ADEF BDEF ABDEF CDEF
ACDEF BCDEF EABCDEF
/ stepwise slstay=.01;
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SAS Program STEP1l_ALL.SAS

’
; :
option linesize=80 pagesize=57;
filename new '0Ol.dat’;
data dataset;
infile new;
input set y x1 x2 x3 x4 el;
data randset;
set dataset;
r1=RANNOR(0);
r2=RANNOR(0);
r3=RANNOR(0) ;
r4=RANNOR(O0);
proc stepwise data=randset;
by set;
model y= x1 x2 x3 el rl r2 r3 r4 /forward slentry=1;

filename new ’03.dat’;
data dataset;
infile new; .
input set y x1 x2 x3 x4 el;
data randset;
set dataset;
r1=RANNOR(0)
r2=RANNOR(0)
r3=RANNOR{0)
r4=RANNOR(0)
proc stepwise data=randset;
by set; 4 o
model y= x1 x2 x3 el rl r2 r3 r4 /forward slentry=1;

- We WE WP
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filename new ‘3l.dat’;
data dataset;
infile new;
input set y x1 x2 x3 x4 el;
data randset;
set dataset;
r1=RANNOR(0);
r2=RANNOR(0);
r3=RANNOR(0);
r4=RANNOR(0);
proc stepwise data=randset;
by set;
model y= x1 x2 x3 el rl r2 r3 r4 /forward slentry=1;
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SAS Program STEP12_ALL.SAS

optlon llne51ze~80 pagesize=57;
filename new '33.dat’;
data dataset;
infile new; '
input set y xl1 x2 x3 x4 el;
date randset;
set dataset; -
r1=RANNOR(O0);
r2=RANNOR(0);
r3=RANNOR(0); -
r4=RANNOR(0);
proc stepwise datarrandset'
by set; ' .
model y= x1 x2 x3 el rl r2 r3 r4 /forward slentry=1;

filename new ’35.dat’;
data dataset;
infile new; s

input set y x1 x2 x3 x4 el; -
data randset;

set dataset;

rl1=RANNOR(0);

r2=RANNOR(0);

r3=RANNOR(O0);

r4=RANNOR(O};

proc stepwise data=randset;

by set;

model y= x1 x2 x3 el rl r2 r3 r4 /forward slentry=1;

filename new ’'63.dat’;

data dataset;

infile new;

input set y x1 x2 x3 x4 el;

data randset;
set dataset;
r1=RANNOR(0);
r2=RANNOR(0) ;
r3=RANNOR(0) ;
r4=RANNOR(O0);

proc stepwise datawmrandset;

by set;

model y= x1 x2 x3 el rl r2 r3 r4 /forward slentry-l,
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14
option linesize=80 pagesize=57;
filename new ’0O2.dat’;
‘data dataset; :
infile new; '
input set y x1 x2 x3 x4 el e2 e3;
daata randset;
set dataset;
r1=RANNOR(O);
r2=RANNOR (0) ;
r3=RANNOR(0};
r4=RANNOR(O0);
r5=RANNOR(0) ;
r6=RANNOR(0);
proc stepwise data=randset;
by set; .

model y= x1 x2 x3 el e2 e3 rl r2 JB r4 r5 r6 /forward
.

slentry=1;

filename new ‘04.dat’;
data dataset;
infile new;

input set y x1 x2 x3 x4 el e2 e3; |

data randset;
set dataset;
r1=RANNOR(0);
r2=RANNOR(0);

~ r3=RANNOR(0)
r4=RANNOR(0)
r5=RANNOR(0)
r6=RANNOR(0)

proc stepwise data=randset;
by set;

.
’
.
4
-
r
.
!

model y= x1 x2 x3 el e2 e3 rl r2 r

slentry=1;

* . L) * .

filename new ‘16.dat’;
data dataset;

infile new;
input set y xl1 x2 x3 x4 el e2 e3;
data randset;

set dataset;

rl1=RANNOR(O0);

r2=RANNOR(O0);

r3=RANNOR(0);

r4=RANNOR(0);
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SAS Program STEP31_ ALL.SAS

|

|

3 r4 r5 r6 /forward




r5=RANNOR(0);
r6=RANNOR(O0); o
proc stepwise data=randset;
by set; '
model y= x1 x2 x3 el e2
slentry=1;

'e3 rl r2 r3 r4
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SAS Program STEP32_ALL.SAS

[4
option linesize=80 pagesize=57;

filename new ’18.dat’;

data dataset;

infile new;

input set y »1 x2 x3 x4 el

data randset; '
set dataset;
r1=RANNOR(0)
r2=RANNOR(0)
r3=RANNOCR(0)
r4=RANNOR(0)
r5=RANNOR(0);
r6=RANNOR(0);

proc stepwise data=randset;
by set;

model y= x1 x2 x3 el e2 e3
slentry=1;

.
14
.
4
.
’
[
[4

filename new ‘20.dat’;

data dataset; '

infile new;

input set y x1 x2 x3 x4 el

data randset;
set dataset;
r1=RANNOR(0)
r2=RANNOR(0)
r3=RANNOR(0)
r4=RANNOR(0)
r5=RANNOR(0)
r6=RANNOR(0)

proc stepwise data=randset;
by set;

model y= x1 x2 x3 el e2 e3
slentry=1;

We WMe W NS W we

filename new ’'32.dat’;
data dataset;
infile new;
input set y x1 x2 x3 x4 el
data randset;
set dataset;
rl1=RANNOR(O);
r2=RANNOR(0);
r3=RANNOR(0);

e2 e3;

rl r2 r3 r4 r5 r6 /forward

e2 e3;

rl r2 r3 r4 r5 r6 /forward

e? e3;
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r4=RANNOR(0);

r5=RANNOR(0) ;

r6=RANNOR(0) ;
proc stepwise data=randset;

by set;

model y= x1 x2 x3 el e2 e3 rl r2 r3 r4 r5 r6 /forward
slentry=1;
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SAS Program STEP33_ ALL.SAS

9 ™o

’
option linesize=80 pagesize=57;
filename new ’‘34.dat’;
data dataset;
infile new;
input 3set y x1 x2 x3 x4 el e2 e3;
data randset;
set dataset;
r1=RANNOR(0)
r2=RANNOR({(0)
r3=RANNOR(0)
r4=RANNCR(0)
r5=RANNOR (0)
r6=RANNOR(0)
' proc stepwise data=randset;
by set;
model y= x1 x2 x3 el e2 e3 rl r2 r3 r4 r5 r6 /forward
slentry=1;

NS We W™E We WI NO

- filename new ‘36.dat’;

data dataset;

infile new;

input set y x1 x2 x3 x4 el e2 e3;

data randset; .
set dataset;
r1:=:RANNOR(0)
r2=RANNOR(0)
r3=RANNOR(0)

- r4=RANNOR(0)
r5=RANNOR(0)
r6=RANNOR(0)
proc stepwise data=randset;
by set;

“‘model y= x1 x2 x3 el e2 e3 rl r2 r3 r4 r5 r6 /forward
slentry=1;

WO WO WMe WS WO W

filename new ’48.dat’;
data dataset;
infile new; .
input set y x1 x2 x3 x4 el e2 e3;
data randset;
set dataset;
r1=RANNOR(0);
r2=RANNOR(O0) ;
r3=RANNOR(0) ;
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xr4=RANNOR(O0);

r5=RANNOR(0) ;

r6=RANNOR(0) ;
proc stepwise data=randset;

by set; . .

model y= x1 x2 x3 el e2 e3'rl r2 r3 r4 r5 r6 /forward
slentry=1;
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; SAS Program STEP24_ALL.SAS
14

option linesize=80 pagesize=57;

filename new ‘50.dat’;

. data dataset;

infile new;

input set y x1 x2 x3 x4 el e2 e3;

data randset;
set dataset;
r1«RANNCR(0)
» 2=RANNOR (0)
r3=RANNOR(0)
r4=RANNOR(0)
r5=RANNOR(0) ;

r6=RANNOR(0);

proc stepwise data=randset;

by set; ‘
model y= x1 x2 x3 el €2 e3 rl r2 r3 r4 r5 -¢ /forward
slentry=1;

e We W W

filename new 'S52.dat’;
data dataset;
- infile new;
input set y x1 x2 x3 x4 el e2 e3;
data randset;
set dataset;
r1=RANNOR(0)
r2=RANNOR(0)
" r3=RANNOR(0)
r4=RANNOR(0);
r5=RANNOR(0);
r6=RANNOR(O);
proc stepwise data=randset;
by set;
model y= x1 x2 x3 el e2 e3 rl r2 r3 r4 r5 r6 /forward
slentry=1;

® WO W Wmo

filename new '64.dat’;
dat: dataset;
inf ..e new;
input set y x1 x7 x3 x4 el e2 e3;
data randset;

set dataset;

r1=RANNOR(0);

r2=RANNOR({0);
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r3=RANNOR(0);
r4=RANNOR(0);
rS=RANNOR(0);
r6=RANNOR(O0) ;

proc stepwise data-raquet,
by set;

model y= x1 x2 x3 ei &2 e3 rl r2 r3 r4 r5 r6 /forward

slantry-l‘
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SAS Program TM.SAS

’
option linesize=80;
filename new ‘TM.dat’;
data new;
infile new;
input DP ymse yep ycp YMILLERS CONST A B AB C AC BC ABC D
AD BD ABD
CD ACD BCD ABCD E AE BE ABE CE ACE BCE ABCE DE
ADE BDE ABDE CDE ACDE BCDE ABCDE F A¥ BF ABF CF ACF
BCF ABCF DF ADF BDF ABDF CDF ACDF BCDF ABCDF EF AEF

ABEF CEF ACEF BCEF ABCEF DEF ADEF EDEF ABDEF CDEF

~ ACDEF BCDEF ABCDEF;

PROC PRINT;
TITLE ‘Analysis of Performance Measures and Significant
Contributing Factors';
ID DP;
VAR ymse ysp ycp YMILLERS CONST A B AB C AC BC ABC D A) BD
ABD ’
CD ACD BCD ABCD E AE BE ABE CE ACE BCE ABCE DE
ADE BDE ABDE CDE ACDE BCDE ABCDE F AF BF ABF CI' ACF
BCF ABCF DF ADF BDF ABDF CDF ACDF BCDF ABCDF E. AEF
BEF
ABEF CEF ACEF BCEF ABCEF DEF ADEF BDEF ABDEF CDEF
ACDEF BCDEF ABCDEF;

proc stepwise;
model ymse = A B AB C AC BC ABC D AD BD ABD
CD ACD BCD AEBCD E AE BE ABE CE ACE BCE ABCy DE
ADE BDE ABDF CDE ACDE BCDE ABCDE F AF BF ABF CF ACF
- BCF ABCF DI ADF BDF ABDF CDF ACDF BCDF ABCDF EF AEF
BEF '
ABEF CEF ACEF BCEF ABCEF DEF ADEF BDEF ABDEF CDEF
ACDEF BCDEF ABCDEF
/ stepwise slstay=.01;

proc stepwise;
model ysp = A B AB C AC BC ABC D AD BD ABD

CD ACD BCD ABCD E AE BE ABE CE ACE BCE ABCE DB

ADE BDE ABDE CDE ACDE BCDE ASBCDE F AF BF ABF CF ACF
B BCF ABCF DF ADF BDF ABDF CDF ACDF BCDF ABCDF EF AEF
EF

ABEF CEF ACEF BCEF ABCEF DEF ADEF PDEF ASDEF CDEF
ACDEF BCDEF ABRCDEF

/ stepwise slstay=.01;

proc stepwise;
model ycp = A B AB C AC BC ABC D AD BD ABD
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CD ACD BCD ABCD E AE BE ABE CE ACE BCE ABCE DE
ADE BDE ABDE CDE ACDE BCDE ABCDE F AF BF ABF CF ACF
BCF ABCF DF ADF BDF ABDF CDF ACDF BCDF ABCDF EF AEF

BEF

ABEF CEF ACEF BCEF ABCEF DEF ADEF BDEF ABDEF CDEF
ACDEF BCDEF ABCDEF

/ stepwise slstay=.01;

proc stepwise;

model YMILLERS = A B AB C AC BC ABC b AD BD ABD

CD ACD BCD ABCD E AE BE ABE CE ACE BCE ABCE DE .
ADE BDE ABDE CDE ACDE BCDE ABCDE F AF BF ABF CF ACF
. BCF ABCF DF ADF BDF ABDF CDF ACDF BCDF ABCDF EF AEF
BEF
: ABEF CEF ACEF BCEF ABCEF DEF ADEF BDEF AEBDEF CDEF
ACDEF BCDEF ABCDEF .

/ stepwise slstay=.01;
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filename new
data new;
infile new;
input set y
proc rsquare
by set;
model y= x1

filename new
data new;
infile new;
input set y
proc rsquare
by set;
model y= xl

filename new
data new;
infile new;
input set y
proc rsquare
by set;
model y= x1

filename new
data new;
infile new;
input set y
proc rsquare
by set;
model y= x1

filename new
data new;
infile new;
input set y
proc rsquare
"by set;
model y= x1

filename new
data new;
infile new;

SAS Program TMSEP1 ALL.SAS

'0l.dat’;

x1 x2 x3 x4 el
data=new mse sp cp b;

e

x2 x3 el ;

'03.dat’;

x1 x2 x3 x4 el ;
data=new mse sp cp b;
x2 x3 el ;

*05.dat’;

x1 x2 x3 x4 el ;
data=new mse sp cp b;

xZ2 x3 el ;

'07.dat’;

x1l x2 x3 x4 el ;
data=new mse sp cp b;
x2 x3 el

‘09.dat’;

xl x2 x3 x4 el ;
data=new mse sp cp b;

x2 x3 el ;

'63.dat’;
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input 'set‘y‘xl x2 x3 x4 el ;
proc rsquare data=new mse sp cp b;
by set;

model y= x1 x2 x3 el -

’
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SAS Program TMSEP3_ALL.SAS

.
14

’

filename new
data new;
infile new;
input set y
proc rsquare

by set; :

model y= x1

filename new
data new;
infile new;
input set y
proc rsquare
by set;
model y= x1

filename new
data new;
infile new;
input set y
proc rsquare
by set;
model y= x1

filename new
data new;
infile new;
input set y
proc rsquare
by set;
model y= x1

filename new
data new;
infile new;
input set y
proc rsquare
by set;
model y= x1

filename new
data new;
infile new;

‘02.dat’;

x1 x2 x3 x4 el e2 e3 €;
data=new mse sp cp b;
x2 x3 el e2 e3;
'04.dat’;

x1 x2 x3 x4 el e2 e3 @;
data=new . mse sp cp b;
x2 x3 el e2 e3;
‘06.dat’;

x1 x2 x3 x4 el e2 e3 €;
data=new mse sp cp b;
x2 x3 el e2 e3 ;
'08.dat’;

x1 x2 x3 x4 el e2 e3 @;
data=new mse sp cp b;
x2 x3 el e2 e3 ;
'10.dat’;

x1 %2 x3 x4 el e2 e3 @;
data=new mse sp cp b;

%2 %23 el e2 e3 ;

’64.dat’;
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input set y x1 x2 x3 x4 el e2 e3 €;
proc rsquare data=new mse sp cp b;
by set;

model y= x1 x2 x3 el e2 e3 ;
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Appendix K: Calculated Performance Measure Values for PM

DP

VOO U WA -

MSEpe

0.8483146
0.6313559
0.8560000
0.6569038
0.8682311
0.6528354
0.8748318
0.6569343
0.8721560
0.6557515
0.8755596
0.6597511
0.8723077
0.6631016
0.8725817
0.6633970
0.8766962
0.6724851
0.8786920
0.6803313
0.8789900
0.6854778
0.8792879
0.6923876
0.8801917
0.6963887
0.8800296
0.6977226
0.8809360
0.7002484
0.8810290
0.7022486
0.8808873
0.7007086
0.8794798
0.6968085
0.8795711
0.6940168
0.8784777
0.6909701
0.8779142
0.6885246
0.8772098
0.6867860
0.8757166
0.6866655

Sp pa

0.9230769
0.7272727
0.9203821
0.7414248
0.9304348
0.7266436
0.9348172
0.7335058
0.9282051
0.7311715
0.9261186
0.7431272
0.9229391
0.7472284
0.9200000
0.7509628
0.9201878
0.7601580
0.9198337
0.7726582
0.9225013
0.7806333
0.9256921
0.7895842
0.9274911
0.7929838
0.9282787
0.7966524
0.9288433
0.7979497
0.9304224
0.8001853
0.9289100
0.7967742
0.9267033
0.7930265
0.9254237
0.7899920
0.9255319
0.7874936
0.9241438
0.7851059
0.9234708
0.7835648
0.9216650
0.7838199
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Cpo pa

0.9121622
0.7127072
0.9102167
0.7315789
0.9178947
0.7217391
0.9255814
0.7278646
0.9188514
0.7254488

0.9178499

0.7348877
0.9143357
0.7362963
0.9112782
0.7395766
0.9125575
0.7501410
0.9120046
0.7640507
0.9134766
0.7723727
0.9169847
0.7820244
0.9190726
0.7863479
0.9197581
0.7905237
0.9205695
0.7921906
0.9220280
0.7948084
0.9209040
0.7916055
0.9188332
0.7888703
0.9174978
0.7851990
0.9174870
0.7823755
0.9163203
0.7803864
0.9151068
0.7789670
0.9139459
0.7796952

MILLERS,,

0.8721805
0.7578948
0.9187500
0.8616352
0.9230769
0.8141593
0.9259259
0.8471338
0.8688524
0.79831¢3
0.9322034
0.8418079
0.8769231
0.8174603
0.8994414
0.8545455
0.9352941
0.8983051
0.9179487
0.8800000
0.9076087
0.8518519
0.9322917
0.8620650
0.9470588
0.8444445
0.9270833
0.8421053
0.9180328
0.8410257
0.9090909
0.8900000
0.9345794
0.7619048
0.9057971
0.8120806
0.8983051
0.7377049
0.9071429
0.8214286
0.8938053
0.7614679
0.9127907
0.8654971
0.8770492
0.7777778




Calculated Performance Measure Values for PM (continued)

DP

MSEpe

0.8764809
0.6851399
0.8771561

-0.6869755

0.8781572
0.6898949
0.8803269
0.6912658
0.8800600
0.6936138
0.8798051
0.6940785
0.8806620
0.6952754
0.8807000
0.6971050
0.8820463
0.6984938

Sp pm

0.9221646
0.7825346
0.9231497
0.7837176
0.9236174
0.7878609
0.9259421
0.78596428
0.9260113
0.7914847
0.9265981
0.7930974
0.9273645
0.7346640
0.9280630
0.7972907
0.9288945
0.7990220
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Cp re

0.9141683
0.7784675
0.9154701
0.7800328
0.9162409
0.7846002
0.9186071
0.7863248
0.5189467
0.7882611
0.9194219
0.7898628
0.9204350
0.7912852
0.9213628
0.7940019
0.9222420
0.7955985

MILLERS;

0.9204546
0.8383234
0.9268293
0.8170732
0.9125683
0.9053254
0.9695122
0.8412699
0.9349113

. 0.8870968
0.92592%9

0.8541667
0.9421053
0.9179487
0.9301075
0.8750000
0.9230769
0.8725491
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Appendix L: Calculated Performance Measure Value for TMSEP

DP

WOIRAU B WN -

RSE‘.

0.76506290
0.6637320
0.1487610
0.1581330
0.8993290
0.6908280
0.1405690
0.1488380
77.9380340
56.1681590
10.2727160
7.9198800
75.7267150
53.3580280
9.5692500
8.0496980
0.9292540
0.8593490
0.1407100
0.1367260
0.9471070
0.8688670
0.1427590
0.1363060
89.9664610
84.1691510
12.1973890
10.9168790
91.0713040
84.5563960
12.4259120
11.2453370
0.9804800
0.8325220
0.2638300
0.3523780
0.9159700
0.9021820
0.2787260
0.3576060
68.9201740
57.7932780
9.4603400
8.4567630
79.2766190

Sp tn

0.8087910
0.7893480
0.1595710
0.1644490
0.9814150

0.7437650 -

0.1471160
0.1552430
83.1626890
61.7997280
10.7429670
9.1730830
82.3265460
61.4832120
9.8932590
8.8758070
0.9358480
0.8651500
0.1423830
0.1338730
0.9643650
0.8869560
0.1425130
0.1346770
90.8934100
85.6997380
12.3373200
11.2033390
91.3485720
85.3022690
12.5170760
11.4638000
1.1347960
0.3686400
0.2741530
0.3504670
0.9888550
0.9639130
0.2903530
0.3316960
74.7250060
65.6259770
9.7781960
9.0632910
83.3591160

‘cp, tm

1.0234350
1.0953370
0.2381690
0.2421660
1.2547690
1.2031360
0.2459100
0.2376890
108.2751310
298.8873060
20.8164410
20.6267190
113.1051330
107.3695450
19.2865920
18.0312250
1.4927760
1.4510400
0.2824660
0.2878020
1.4791970
1.5071520
0.2991620
0.2990880
147.2874150
141.4162900
26.9606130
26.4688630
142.1083830
144.7259980
28.0536590
27.5978010
1.3585030
1.1092190
0.2970570
0.360928C
1.3031770
1.1355340
0.3201970
0.3655560
108.4361880
97.4607010
18.6886480
20.8584960
107.4557270

216

MiLLERS;s

1.1609520
1.6926820
0.1970290
0.2214360
1.3781180
1.4195740
0.1979690
- 0.2127430
132.1354680
135.7216490
12.9381190
15.4755950
131.7463990
141.4950870
12.2740480
16.5588720
1.1517850
1.0863170
0.1426570
0.1418870
1.0234790
1.0349690
0.1468790
0.1383570
101.9961320
102.0691220
12.7069930
12.9651400
101.7852550
98.6170500
12.4964480
12.0174870
1.5437970
1.4102540
0.3223040
0.3678640
1.4501740
1.3516600
0.3200920
0.3798990
124.8693010
132.9111790
13.1972780
15.7659790
119.1930390




- Calculated Performance Measure Value for TMSEP

MSE:,

62.0207100
10.2950660
7.6850630
0.9873370
0.9494320

-0.1949640

0.2108450
1.0238520
0.9318340
0.1930650
0.2103010
92.1139220
83.7433850
12.0630550
10.9248680
93.2993090
85.7757420
11.7405510
11.1539340

Sp ta

cptn

70.4859700 102.2720180

10.8312980
9.1260600
0.9887390
0.9554130
0.1986370
0.2073290
1.0291120
0.9543170
0.1973760
0.2086840

92.9549100

85.6070180

12.1251390

11.0991730

94.0328060

87.8176350

11.8084090

11.2962640

217

19.9675880
19.7178250
1.5157680
1.4946450
0.3434490
0.3380340
1.5982300
1.5202000
0.3198640
0.3424410

148.0592800
142.4074100

26.6133730

26.7097450
151.9314420
140.6162720

26.8109000
25.5540160

MiLLERS;,

134.2141570
12.3031880
17.8853320
'1.2343050
1.3705840
0.2177160
0.2504210
1.1669810
1.0758220
0.2236930
0.2333300

©119.4541400

96.1285930
12.2637760
11.5297640
96.3185420
106.2438430
11.8390310
11.6543080
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